
OCTA
Integrated simulation system for soft materials

GOURMET PYTHON SCRIPT

REFERENCE

OCTA User’s Group

DEC. 25 2002

Authors of the Manual
The Japan Research Institute, Limited

Program Developers
Software Design Shinji Shibano, Yuzo Nishio
Software Development Masahiro Nishimoto
Testing Yuzo Nishio, Eisuke Nishitani

The Japan Research Institute, Limited

Acknowledgment
A large part of this work is supported by the national project, which has been entrusted to the Japan

Chemical Innovation Institute (JCII) by the New Energy and Industrial Technology Development Organiza-
tion (NEDO) under METI’s Program for the Scientific Technology Development for Industries that Creates
New Industries.

Copyright c©2000-2002 OCTA Licensing Committee All rights reserved.

Contents

1 Preface 1

2 Basic usage of Python 3
2.1 Starting of Python . 3
2.2 Variable . 3
2.3 tuple, list, dictionary . 3
2.4 Control statements . 4
2.5 Function and class . 4
2.6 Module . 5
2.7 Bibliography . 5

3 Using Python in OCTA 7
3.1 About using Python in OCTA . 7
3.2 Extended module for UDF data operations the UDFManager for Python 7
3.3 Operations of Python in GOURMET . 13

3.3.1 How to use of the UDFManager for Python in GOURMET 13
3.3.2 The sheet handling functions for graph drawing . 14
3.3.3 Drawing functions . 15

3.3.3.1 Introduction of basic drawing functions . 15
3.3.3.2 About drawing contour . 17
3.3.3.3 Meshfield function . 19
3.3.3.4 Drawing attribute . 23
3.3.3.5 Cognac drawing class . 25

4 Samples 29
4.1 Example of the UDFManager for Python . 29
4.2 Example of Python in GOURMET . 30
4.3 Example of drawing functions . 31

iii

iv CONTENTS

List of Figures

3.1 Node order of a contour element . 17

v

vi LIST OF FIGURES

Chapter 1

Preface

In GOURMET, using the Python script language, you can easily operate the data described in a UDF file.
With Python script, you can perform not only getting or editing the value, but changing the unit which is
attendant to the data, or adding a new analysis step and writing out a file.

In addition, using the drawing functions which can be used from the Python, you can draw simple
figures, such as a segment, an arrow, a sphere and a tetrahedron etc, and a little complicated figures, such
as a contour and an isosurface on the drawing output screen of GOURMET.

There are two ways of executing the above operations by Python scripts:

• UDF Manger for Python

After starting Python from a command window so that Python may usually be handled, by importing
a special extended library, the extended Python commands treating UDF data are available. The
command group treating UDF data is summarized as the UDFManager class methods, and is explained
in Section 3.2.

• Python in GOURMET

After starting the GOURMET,which is the graphical user interface tool, and reading a UDF formatting
data file, the following Python commands can be executed in Python scripting window of GOURMET.

•the methods of the UDFManager class.
•the drawing functions for drawing figures on the viewer screen of the GOURMET.
•the sheet handling functions for graph drawing.

Special usage to execute the methods of the UDFManager class on the Python scripting window of
GOURMET is introduced in Section 3.3. And this section discusses the drawing functions and the
sheet handling functions.

Chapter 2 describes the basic usage of Python and Python’s terms, that is, the above-mentioned ”ex-
tended library” and ”import” are also explained.

1

2 CHAPTER 1. PREFACE

Chapter 2

Basic usage of Python

This chapter describes how to use Python and how to write Python scripts briefly. If you want to know
about Python in more detail, please read the books in the bibliography of the last of this chapter.

2.1 Starting of Python

Python runs in many platforms, such as Unix, Linux and Windows, etc. With a Unix (Linux) machine, if
you type ”python”, Python interpreter will start.(Notes 1) On Windows, Python interpreter can be started
as an application from the start menu.

2.2 Variable

There is no type declaration of variables in Python interpreter. The value handled in Python is an object,
which are a numerical object (integer, long integer, floating point and complex types), a string object, an
array object and the object of other classes. The variable of Python interpreter only binds the name and a
object, so there is no type declaration of variables. Easy examples are shown below.

msg="Hellow" + "world"
int=10
flt=0.5
ans=int*(1+flt)*2.5
print msg, ans

A string is enclosed in single quotes (’), double quotes (”), triple single quotes (”’) or triple double quotes
(”””). Operators + can use to connect 2 strings. For numerical values, the usual arithmetic operations (+,
-, *, /), a power operation (**) and a operator (%) can be used. The operator % yields the remainder from
the division of the first expression by the second.

2.3 tuple, list, dictionary

Python offers the tuple, the list and the dictionary as the data types, which gather several separate value
into one. Once a tuple is created, we cannot change the elements or the number of elements. On the other
hand, a list can change the elements, and can delete or add elements. A dictionary is the built-in hash table,
so we can add, get or delete a value by the key from a dictionary object. The example of these usage and
the executing result are shown below.

tuple = (’awk’ , ’perl’ , ’ruby’ , ’python’)
list = [1, 2.3, [’awk’,’ perl’ , ’ruby’]]
list.append(’python’)
dict = { ’awk’:1, ’perl’:[2,3], ’ruby’:(’diamond’,’carbon’), ’python’:1.5 }

1It is assumed that the Python interpreter is already installed in your machine and Python is set in shell’s search paths.

3

4 CHAPTER 2. BASIC USAGE OF PYTHON

print len(tuple), tuple[2]
print len(list), list[0], list[2][0]
print len(dict), dict[’ruby’]

produces as output:

4 ruby
4 1 awk
4 (’diamond’, ’carbon’)

2.4 Control statements

Python has the usual primary control syntax, those are ”for” or ”while” statements as loop statements and
if/else statements as conditional branching.

As a simple example of conditional branching, the program which substitutes a larger number between
a and b for m is as follows.

if a > b:
m = a

else:
m = b

As an example of a loop, the program which puts the prime numbers up to 100 into a list is shown. The
function range() is frequently used in the for loop statement, for example, range(i, j, k) returns the list of
numbers which increase from i to (j-1) in k step. If k is omitted, it will be regarded as 1.

n=100
found=[]
for trgt in range(2, n+1):

for dv in range(2, trgt+1):
if dv >= trgt:

found.append(trgt)
break

if trgt % dv == 0:
break

print found

• About program blocks

In Python, the depth of indentation expresses the block structure of program. For example,
the indentation is used to make grouping of the processing statements in the if/else statement
or the loop statement. Although each block has any depth of indentation, the indentation
of one block needs to have the same depth. In the def or class statement as shown later, the
program blocking using the indentation is needed.

2.5 Function and class

Like the following example, a new function can be defined with the def statement.

def fact(n):
if (n<=1): return 1
return fact(n-1)*n

The class, a user defined compound data type with methods, can be defined with the class statement.
About defining new classes, you should refer to bibliographies.

2.6. MODULE 5

2.6 Module

In Python, the classes or functions which were described in an external program file can be used by includeing
the file. An external program file is called an extended library or an extended module. An extended module
is not only a scripting file written in the Python scripting form, but a compiled dynamic link module written
in C/C++. The import statement is used when an external extended module is loaded.

For example, when the above fact(n) function is saved to the file named factpy.py, the file is included as
follows and the function becomes usable:

import factpy

The function can be called as follows:

print factpy.fact(10)

If you want to miss the ”factpy.” of the called function name, the import statement is used as follows:

from factpy import *

It can be called as follows:

print fact(10)

If there is no extended module in the executing directory of Python, it is necessary to set up the directory
path which has the extended module to the environment variable PYTHONPATH.

2.7 Bibliography

Guido van Rossum. ”Python Tutorial” http://www.python.org, March 22, 2000.
Mark Lutz ”Programming Python” O’Reilly & Associates, Inc, October 1996.
David M. Beazley ”Python Essential Reference” New Riders Publishing, 1999.
Python Language Home Page

Python can be downloaded from here. http://www.python.org/

6 CHAPTER 2. BASIC USAGE OF PYTHON

Chapter 3

Using Python in OCTA

In OCTA, the operations of the UDF data take the main subject. The class for handling a UDF file easily
from Python is offered as an extended module. The operations of the extended modules which can be used
on OCTA are explained below.

3.1 About using Python in OCTA

The main data of a UDF file consists of the data name definition part and the data entity part, and the
data entity part may have a large number of numeric values or strings. If a data file have more values, it
will become more difficult to find the value to need from a big size array, for example. The UDFManager
extended module will find out the value from a lot of data, if the data name or the set of the name and the
array index are passed to the get() method.

The UDFManager extension module can be included by ”import” command from the Python interpreter
like an ordinary Python extension module. With executing commands as follows after starting a Python
interpreter, you can get the desired value from a UDF data file.

from UDFManager import *
udfobj = UDFManager(’UDF_file_path’)
print udfobj.get(’data_name_and_array_index’)

You can use other methods, such as data editing or record movement, and others.
When the UDFManager extension module is used in GOURMET, a 3-dimensional graphical model can

be drawn on the view screen of GOURMET. The same data manipulation methods of the UDFManager
extension module can be used in GOURMET, too.

3.2 Extended module for UDF data operations the UDFManager for
Python

The UDFManager module has several classes. The UDFManager class can read, write and operate a UDF
data. The Location class is an auxiliary class for the string operations which allowed to handle a UDF
variable name easily. Other classes are used for drawing on GOURMET.

Before using the methods of the UDFManager class, it is necessary to execute the import command for
reading the extended module.

The extended module consists of UDFManager.py and UdfManagerPython.dll(so). UdfManagerPython.dll
(so) is imported in UDFManager.py.

(1) UDFManager class

The methods of the UDFManager class are listed below.

7

8 CHAPTER 3. USING PYTHON IN OCTA

• UDFManager(udffilename)

The UDF file specified to udffilename is opened and a UDFManager object is created.

(Example)
from UDFManager import *
uobj=UDFManager("/home/octa/test/simple_test_out.udf") # on UNIX(Linux)
uobj=UDFManager("D:/octa/test/simple_test_out.udf") # on Window

• totalRecord()

The total record count in a UDF file is returned.

• currentRecord()

The current-record position is returned.

• jump(record no or label)

The target record is moved to the record position specified with the integer number or the
label string. In specifying with the integer value, -1 is specified to move to the common data
part. And to move to some record part, the integer value which counted from the first record
at zero is specified. If the record movement is successful, the current record position number
is returned, and if it cannot do, returns -2.

• nextRecord()

The target record moves to the next record. If the record movement is successful, the current
record position number is returned, and if it cannot do, -2 is returned.

• newRecord(label=””)

A new record with the name given with the label argument is appended at the last record
and the name of the record is returned. The target record moves to the new record.

• setRecLabel(label)

The label of a current record is changed to the given label.

• getRecLabel()

The label of a current record is returned. If a current record is the common data part, None
is returned.

• seek(location)

The reference position of data moves to the location specified by the ’location’ argument.
The term location means the pair of a data name and an array index.

(Example)
uobj.seek("field.fraction[0].value[1]")

The following is equivalent to the above:

uobj.seek(’field.fraction[].value[]’,[0,1])

• tell()

The current location is returned.

• next()

The rightmost index included in the location of an array is increased by one.

• prev()

3.2. EXTENDED MODULE FOR UDF DATA OPERATIONS THE UDFMANAGER FOR PYTHON 9

The rightmost index included in the location of an array is decreased by one.

• type(location)

The UDF data type of the current location is returned as a string.

• size(location)

If the specified location is an array, the number of elements is returned. When a scalar
variable has a value, 1 is returned, and if it has no value, 0 is returned. When the specified
location is wrong, None is returned.

(Example)
uobj.size("field.fraction[0].value[]")

The following is equivalent to the above:

uobj.size(’field.fraction[].value[]’,[0])

• get(location,unit=””)

Returns a value at the specified location. When the specified location is compound data
type, all the values included in the compound data are stored to a list and returned. When
the unit is specified, the values are converted into the unit. Here, the unit which can be
specified must have the same unit dimension as the unit specified in the definition part of a
UDF file. (Please refer to ”UDF Syntax Reference” about the dimension of a unit.)
A unit cannot be specified to the location which indicates a compound data. This method
returns None, in the following case, the wrong data name is specified to the location, or the
unit conversion cannot be done with the specified unit.

(Example)
uobj.get("field.fraction[0].value[1]")
The following is equivalent to the above:
uobj.get(’field.fraction[].value[]’,[0,1])

uobj.get("field.fraction[0].value[1]","[m/s]")
or:
uobj.get(’field.fraction[].value[]’,[0,1],"[m/s]")

When an array index is omitted, such as uobj.get(”field.fraction[0].value[]”), all the array
data is put in a list and returned. An array index is omissible only from right-hand side of
a location.

• getArray(location,unit=””)

This method is identical in functionality to the get method. The value of the specified
location is returned. None is returned if data does not exist. When an array index is
omitted, all the array data is put in a list and returned.

• put(value,location,unit=””)

The value is set to the location. When a unit is specified, it is considered that the data has
the value in the unit. The unit which can be specified must have the same unit dimension
as the unit specified by the definition part of a UDF file.
A unit cannot be specified to the location which indicates a compound data. If the value is
appropriately arranged into a list, they can be set to a compound data or an array at once.

(Example)
uobj.put(2.34,"field.fraction[0].value[1]")
uobj.put([1.1,2.3,3.4],’field.fraction[].value[]’,[0])

• insert(number,location)

10 CHAPTER 3. USING PYTHON IN OCTA

The number of empty data is inserted before the specified location.

• erase(number, location)

The number of data is deleted after the specified location. When the deletion is successful, a
zero is returned, and None is returned when it fails. To delete scalar data or scalar compound
data, you have to specify a larger number than zero to the argument ’number’.

• write([filename,record,mode])

Data is written to a file.

All the present data is overwritten to the same file, as follows:
uobj.write()

It writes into another file:
uobj.write("/home/octa/test/simple_test_work.udf")

Only the current record is written into another file:
uobj.write("/home/octa/test/simple_test_work.udf",currentRecord)

The current record data is appended to the tail of another file:
(If there is no file, it will newly created.)
uobj.write("/home/octa/test/simple_test_work.udf",currentRecord,append)

record=allRecord/currentRecord : All records or a current record is specified.
mode=overwrite/append : Overwriting or appending is specified.

• getIDList(class name)

All the ID type values used for the objects of the class given by class name are returned as
a list.

(Example)
idlist = uobj.getIDList("Vertex")

• getKeyList(class name)

All the KEY type values used for the objects of the class given by class name are returned
as a list.

(Example)
keylist = uobj.getKeyList("AtomType")

• getLocation(class name,key or index)

A location of the data which has the same KEY/ID value as the specified value by key or index
in the objects of the class given by class name is returned.

(Example)
loc = uobj.getLocation("AtomType",keylist[0])

• About operations for header informations

getEngineType()

getEngineVersion()

getIOType()

getProjectName()

getComment()

getAction()

3.2. EXTENDED MODULE FOR UDF DATA OPERATIONS THE UDFMANAGER FOR PYTHON 11

These methods return the UDF header informations.

setEngineType(engine)

setEngineVersion(version)

setIOType(io)

setProjectName(project)

setComment(comment)

setAction(comment)

You can modify the UDF header informations by these methods.

• About operations for a unit

unitConvert(to unit,from unit,value=1.0)

The given value is converted into to unit from from unit, and returned. Not only a numeric
value but a list of numeric values can be given to the value argument.
(Example) getUnitValue(’[erg]’,’[J]’,[1.1,2.1])

unit(variable name,set unit name=”)

The unit assigned to a UDF data variable is returned or changed. Without set unit name,
if the variable specified by variable name has a unit, the unit name will be returned. With
set unit name, the unit of the variable is changed to the given unit name. The units before
and after changing must have the same unit dimensions.

getUnit(unit name)

A unit definition described in the unit definition part of a UDF file is returned. A unit name is
specified by unit name, which is enclosed in square brackets, for example, getUnit(”[sigma]”).

setUnit(unit name,unit expression)

A unit definition is newly created or changed. The full expression or the coefficient part of
a unit definition is specified at unit expression.
(Example)
setUnit(’[sigma]’,’1.2[nm]’)
If [sigma] has been defined as ’1.1 [nm]’, you can change 1.1 to 2.1, like this:
setUnit(’[sigma]’,2.1)

• About the operations of a unit system

allUnitSystem()

All the name of the unit system which can be used for unit conversion is returned as a list
of strings.

getUnitSystem()

The current unit system name is returned.

setUnitSystem(unit system)

A unit system is changed.

readUnitSystemFile(unit system path)

A new unit system definition file is read. (Please refer ”UDF Syntax Reference” about a
unit system definition file.)

• file()

12 CHAPTER 3. USING PYTHON IN OCTA

The path of a current UDF file is returned.

• About the change of the record part and the common part

common start()

common end()

The methods for getting values, such as size(), get(), getArray(), getIDList(), getKeyList()
and getLocation(), search for the current record first, and if there is value, the value will
be returned. But if there is no value in the current record, the common data part will be
searched for next. When a variable has its values in both a current record and the common
data part and you want to get only values in the common data part, the target to search
can be made only into the common data part by common start() method. If common end()
is used, the target will return to the original record.

(2) Location class

In treating data with the methods of the UDFManager class, the string operation of a data name may
become complicated. Using Location class, string operations of a data name can be easier.

The following UDFManager methods can take a Location object as arguments directly:
put, get, getArray, insert, erase, seek.

The methods of Location class is shown here.
The following terms are used about ”location”. For example, in the expression of a location ”A.B[0].C[1]”,

the top location of ”A.B[0].C[1]” is ”A”, the parent location of ”A.B[0].C[1]” is ”A.B[0]”, ”A.B[0].C[1]” is
the child location of ”A.B[0]”, the path of ”A.B[0].C[1]” is ”A.B[].C[]”, and the index of ”A.B[0].C[1]” is
[0,1].

• Location(path and index)

The instance of the Location class is generated:
loc = Location(’a[].b[]’,[0,0])
or
loc = Location(’a[0].b[0]’)

• str()

The data location string which may contain the array index is returned.

• root()

The target location is changed to the top of the current location which is a compound data
type.

• seek(location index args)

A given location is set as the target of processing.

• up()

A target location is moved to the parent of the current location which is a (nested) compound
data type.

• down(location index args)

A target location is moved to the child of the current location which is a (nested) compound
data type.

• prev()

The rightmost index of the current location is decreased by one.

3.3. OPERATIONS OF PYTHON IN GOURMET 13

• next()

The rightmost index of the current location is increased by one.

• getPath()

The path of the current location is returned.

• getIndex()

The index list of the current location is returned.

Examples of Location class

>>> from UDFManager import *
>>> loc=Location(’a[].b[]’,[0,0])
>>> print loc.str()
a[0].b[0]
>>> loc.next()
a[0].b[1]
>>> loc.up()
a[0]
>>> loc.down(’c[0]’)
a[0].c[0]
>>> loc.getPath()
’a[].c[]’
>>> loc.getIndex()
[0, 0]

3.3 Operations of Python in GOURMET

Python can be executed in the Python scripting window of GOURMET. Therefore, the UDFManager class
can be operated like the usual Python command window. About a UDF file opened currently in GOURMET,
the methods of the UDFManager class can be used in the special way. In the following, those special
operations and the usage of the sheet handling function for graph drawing are described.

3.3.1 How to use of the UDFManager for Python in GOURMET

First, there is no need of executing the ”import” command for importing a UDFManager extened module.
Because the import command is executed automatically at the time of GOURMET starting. Furthermore,
for a UDF file opened currently in GOURMET, the UDFManager object of the name udf is generated
automatically. In executing the methods of the UDFManager class to a UDF file opened currently in
GOURMET, it is not necessary to describe a UDFManager object udf , that is, the methods can be called
just like functional forms.

There are the following other extensions and changes in operating the UDFManager class in GOURMET.

(1) $ extension
Instead of passing a location as the arguments to the get(), getArray() and put() methods of the UDF-

Manager class, attaching $ to the top of a location can be substituted for those methods. For example:
data = getArray(”a[].b”,[1])
the above can be written as follows,
data=$a[1].b
Where, since the UDF variable with $ extension is not a variable of Python interpreter, the convenient

slice operator for a list variable in Python cannot be used for it.

(2) Other available methods in GOURMET
focusData(datapath)

14 CHAPTER 3. USING PYTHON IN OCTA

The data name specified by the datapath is displayed on the editor screen of GOURMET.

The sheet handling methods (functions) and the drawing methods (functions) are also available only in
GOURMET.

(3) Change for functional usage
When a method is used like a function, there are some methods which need to change its name called as

functions. Since some method names may overlap the functions of the Python interpreter, it is necessary to
make a method name and a function name different only in the following cases.

Instead of the type() method, udftype() is used as a function.

3.3.2 The sheet handling functions for graph drawing

GOURMET has the features which easily displays a graph using Gnuplot. The sheet for graph drawing has
the table form structure, and by the sheet handling functions of the UDFManager class, values can be set
to the sheet or the value of the sheet can be got or edited.

If some UDF file is opened in GOURMET, the sheet for graph drawing named ”GraphSheet[]” is au-
tomatically displayed on the data view. About ”GraphSheet[]”, using the sheet handling functions shown
below, new variables can be added as a column, and values can be set to them.

• Defining columns

createSheetCol(col,name,size=0,type=’float’)

col : This is a column number starting at 0. When the specified column number has already existed,
the column is overwritten. When more numbers than the number of the present columns are
specified, the column is added at the last.

name : This specifies the label of a column to add.

size : This specifies the size of rows. Even if this is zero, the rows can be added later.

type : This specifies the data type of the column. A number type is good at the default ’float’. The
’string’ is used only for string data.

• Delete columns

deleteSheetCol(col or name)

col or name : The label string or the column number of a column to delete is specified.

• Insertion of rows

insertSheetRow(index,number)

index : The row number of the row position which inserts rows is specified, the row number starts at
zero. The number rows are inserted just before this row position for all columns.

number : This specifies the number of the rows to insert.

• Delete of rows

deleteSheetRow(index,number)

index : This specifies the row number of the start row to delete. The number rows are deleted for all
columns.

• Values set for each column

setSheetCol(col or name,location index or data list)

col or name : A label string or a column number of a column is specified.

location index or data list : A list of values or a data name is specified.

• Value set for each cell

setSheetData(col or name,row,location index or data)

3.3. OPERATIONS OF PYTHON IN GOURMET 15

col or name : A label string or a column number is specified.

row : A row number is specified.

location index or data list : A value set to a cell is passed. A value enclosed square brackets or a
UDF variable name is specified.

• The number of columns and the number of rows are returned, respectively.

getSheetColSize()

getSheetRowSize()

• Getting values

value list = getSheetCol(col or name)

All the values of the specified column are returned as a list.

value = getSheetData(col or name,row)

Returns the value of a cell specified with the column and row.

• The examples of the sheet handling functions:

In the following example, two columns are created and the values of the variable gr are substituted for
the GraphSheet[].

gr=[[1,2],[3,4],[5,6],[7,8],[9,10],[11,12],[13,14]]
n = len(gr)
createSheetCol(0,’r’)
createSheetCol(1,’gab’)
for i in range(0,n):

rsize=getSheetRowSize()
if rsize <= i:

insertSheetRow(rsize,1)
setSheetData(0,i,[gr[i][0]])
setSheetData(1,i,[gr[i][1]])

$GraphSheet[].r = [1,2,3,4]
sdata = $GraphSheet[].r

3.3.3 Drawing functions

Using the drawing functions shown below in GOURMET, you can draw on the 3D object window of the
viewer screen of GOURMET.

The followings explaine the arguments of the drawing functions introduced here.
coordinateN(N is integer) is either a list type data with 3-dimensional coordinate value such as [x,

y, z], or a location string with $ at the head, the location indicates the compound data of (x, y, z) values.
coordinate list is a list type data with 3-dimensional coordinate value such as [x, y, z].
attribute id is an integer value or a list of floating values, which specifies the display attributes for

drawing.

3.3.3.1 Introduction of basic drawing functions

• Drawing a line

line(coordinate1,coordinate2,[r,g,b,t])
line(coordinate1,coordinate2,attribute id)

• Drawing a point

point(coordinate,[r,g,b,t])
point(coordinate,attribute id)

16 CHAPTER 3. USING PYTHON IN OCTA

• Polygon

polygon(coordinate list,[r,g,b,t])
polygon(coordinate list,attribute id)

• Polyline

polyline(coordinate list,[r,g,b,t])
polyline(coordinate list,attribute id)

• Disk

disk(coordinate1,[r,g,b,t,radius,vx,vy,vz])
disk(coordinate1,attribute id)

• Drawing a ellipse with one center point

ellipse1(coordinate1,[r,g,b,t,a,b,vx,vy,vz])
ellipse1(coordinate1,attribute id)

• Drawing a ellipse with two focus points

ellipse2(coordinate1,coordinate2,[r,g,b,t,a,vx,vy,vz])
ellipse2(coordinate1,coordinate2,attribute id)

• Cylinder

cylinder(coordinate1,coordinate2,[r,g,b,t,radius])
cylinder(coordinate1,coordinate2,attribute id)

• Sphere

sphere(coordinate1,[r,g,b,t,radius])
sphere(coordinate1,attribute id)

• Drawing a ellipsoid with one center point

ellipsoid1(coordinate1,[r,g,b,t,a,b,c,vx,vy,vz])
ellipsoid1(coordinate1,attribute id)

• Drawing a ellipsoid with two focus points

ellipsoid2(coordinate1,coordinate2,[r,g,b,t,a])
ellipsoid2(coordinate1,coordinate2,attribute id)

• Tetrahedron

tetra(coordinate1,coordinate2,coordinate3,coordinate4,[r,g,b,t])
tetra(coordinate1,coordinate2,coordinate3,coordinate4,attribute id)

• Cube

cube(coordinate1,length,[r,g,b,t])
cube(coordinate1,length,attribute id)

coordinate1 is a central coordinate and length is a length of one side.

• Arrow which has an arrowhead at coordinate2

arrow(coordinate1,coordinate2,[r,g,b,t,radius,height])
arrow(coordinate1,coordinate2,[r,g,b,t,radius,height,magnification])
arrow(coordinate1,coordinate2,attribute id)

• Text

text(coordinate,contents,[r,g,b,t,size])
text(coordinate,contents,attribute id)

• Other drawing operations

clearDraw()

3.3. OPERATIONS OF PYTHON IN GOURMET 17

All the graphic objects before calling this are erased.

appendDraw()

Within one Python execution, the drawings after calling this are overwritten.

clearDrawMode()

It enters the mode in which drawings erase for each Python execution. This mode is the
default.

appendDrawMode()

It enters the mode in which all drawings are overwritten.

3.3.3.2 About drawing contour

• Drawing contour cross section and isosurface

contour(element type,node number,node coordinate list,node value list)

This makes the element for creating the piece of a contour.

Element element type node number
Triangle ”triangle” 3
Quadrangle ”quad” 4
Tetrahedron ”tetra” 4
Hexahedron ”hexa” 8

Table 3.1: Contour element type

�
�

�
�

�
�

�� �
�

�
�

�
�

�� �
�

�
�

�
�

�� �
�
�
�
�
�
����

�
�

��
�

��

�
�� �

��

�
��1 2

34 5
6

78

1 2

3
4

1 2

3

1 2

3

4

tetratriangle

quad hexa

Figure 3.1: Node order of a contour element

The value in Table 3.1 is used for specifying element type and node number. The node order of a
element is shown in Figure 3.1 .

18 CHAPTER 3. USING PYTHON IN OCTA

The example of a contour function is as follows.

contour(”triangle”, 3, [[0,0,0],[1,0,0],[0,1,0]],[1.0,2.0,3.0])

• Specification of a isosurface

clevel(min value,max value,attribute id)
A isosurface is created from the points with the value between min value and max value in the elements
specified with the contour function.

• Cancel of isosurfaces

delete clevel()
All specifications by the clevel() function called before this are canceled.

• Specification of the maximum and the minimum value which are drawn on a contour
cross section.

crange(min value,max value)
The value of each node specified with the contour function is set the value below min value to min value
and the value more than max value to max value.
Note:
1. When two or more crange() are called, the last call is used.
2. In min value >max value, it is ignored.

• Specification of a cutting plane

cplane(point on plane,normal vector)
This specifies the cutting plane on which a contour is drawn. The plane given here cuts the solid
elements specified by the contour() function or generated from the below-mentioned meshfield.
Note: There is no need of specifying a cutting plane for 2-dimensional flat elements, such as triangles
or quadangles, but specifying color is needed using the ccolor function described later.

• Cancel of cutting planes

delete cplane()
All cutting planes specified by the cplane() function called before this are canceled.

• Gradating contour

When the colors corresponding to the maximum and minimum values are given respectively, the colors
displayed on a contour change gradually between the color of minimum and the color of maximum.
Those colors correspond to the values given to the nodes of elements.
ccolor([minR,minG,minB,minT,maxR,maxG,maxB,maxT])
Here minR, minG, minB and minT are the RGB values and transparency for the minimum value, which
values are between 0 and 1. The maxR, maxG, maxB and maxT are the RGB values and transparency
for the maximum value.
The above calling can be described as follows using the display attribute number to the ccolor()
functions.
ccolor(attribute id)
Note: When two or more ccolor() are called, the set value of the last call is used.

• Discrete contour(color specification corresponding to the value)

dcolor(value list,attribute id list)
or
dcolor(value list,color list)
This specifies colors corresponding to each values.
(sample 1) dcolor([0,1,2],[1,2,3]) # with attribute ID
(sample 2) dcolor([0,1,2],[[1,0,0,1],[0,1,0,1],[0,0,1,1]]) # with RGB
Note: When two or more dcolor() are called, the set value of the last call is used.

3.3. OPERATIONS OF PYTHON IN GOURMET 19

3.3.3.3 Meshfield function

The contour() function described above creates one element (triangle, quad, tetra and hexa). On the other
hand, the meshfield function creates many elements at one time from a mesh form efficiently.

(1) The meshfield function generates mesh objects.

(1-1) Regular mesh(structured mesh)

mesh obj in python = meshfield(mesh type, coord list list, div list)

mesh type : This specifies the type of a mesh. A type name uses the following, and 4 characters of the
beginning are used.

”regular”, ”rectangular”, ”sphere”(2-dimensional polar coordinate is used), ”cylinder”

coord list list : Coordinate data of a mesh is given in the following form for each mesh type.

With ”regular”, the maximum and minimum coordinates is set as a Python’s list.
[[xmin, xmax],[ymin, ymax],[zmin, zmax]]
With ”sphere”, the minimum and maximum of (r, θ) are specified, respectively.
[[rmin, rmax],[thetamin, thetamax]]
With ”cylinder”, the minimum value and maximum of (r, θ, z) are specified, respectively.
[[rmin, rmax],[thetamin, thetamax],[zmin, zmax]]
With ”rectangular”, the coordinates of a starting point, dividing points and an end point
are given as Python’s lists.
[[xmeshPosition0, xmeshPosition1,],[ymeshPosition0,...], ...]

div list : The numbers of partitions are specified in the following form for each mesh type.

With ”regular” or ”rectangular”, the number of partitions of (x, y, z) is specified, respectively.
[x npart, y npart, z npart]
With ”sphere”, the number of partitions of (r, θ) is specified, respectively.
[r npart, theta npart]
With ”cylinder”, the number of partitions of (r, θ, z) is specified, respectively.
[r npart, theta npart, z npart]

(1-2) Unstructured mesh

mesh obj = mesh(element type, vertex coord list, element vertex list)

element type : This specifies the type of a element.

A type name uses the following, and 4 characters of the beginning are used.

”triangle” : triangle element
”quad” : quadrangle element
”tetra” : tetrahedron element
”hexa” : hexahedron element

vertex coord list : This argument specifies the indexes and the coordinates of nodes (vertexes) as a list.

Coordinates can be given as a list of coordinate values or a location of UDF data.

[[1, [x1, y1, z1]],[2, [x2, y2, z2]],[3, [x3, y3, z3]],...,[N, [xN, yN, zN]]]

When the location (here for example, ”position”) of the compound data which has coordinates (x, y, z)
as it’s children is given, the coordinate values (x y, z) in the compound data can be got in a meshfield
object.

20 CHAPTER 3. USING PYTHON IN OCTA

[[1, mesh.data.vertex[0].position],[2, mesh.data.vertex[1].position],

[3, mesh.data.vertex[2].position],.....,[N, mesh.data.vertex[N-1].position]]

The indices are integer and those order is free (no need of sorting in ascending order or descending
order).

element vertex list : In order to show the connective order of the nodes which forms an element, the
indexes of the nodes are passed as a list.

With ”triangle”, for example:

[[1, 2, 3],[5, 6, 7],[9, 10, 11],.....,[2, ,3, N]]

With ”quad” or ”tetra”, for example:

[[1, 2, 3, 4],[5, 6, 7, 8],[9, 10, 11, 12],.....,[1, 2, 3, N]]

(2) Values are set to each node.

(2-1) The index and the value (scalar or vector) of each node are set by the set() method.

mesh obj in python.set(index list, data value)

(2-1-1)In the regular mesh(structured mesh)

A value is set by a grid index. A grid index is the set of numbers which enumerated the dividing points
in the meshed grid from the origin.

• For scalar value

A value 1.2 is set to the node of the dividing point at the 0th of X direction, the 1st of Y direction and
the 2nd of Z direction:

meshf.set([0,1,2],1.2)

• For vector value

meshf.set([0,1,2],[1.2,3.5,0.8])

(2-1-2)In the unstructured mesh

A value is set with a node index.

• For scalar value

meshf.set(1,2.2)

• For vector value

meshf.set(1,[1.2,3.5,0.8])

(2-2) The list of indexes and the list of values (scalar or vector) of each node are set by the
field() method.

mesh obj.field(index list list, data value list)

index list list : For a regular mesh, grid indexes are specified, like this:

[[0,0,1], [0,0,2], [0,0,3],...,[0,0,Nz-1],..., [Nx-1,Ny-1,Nz-1]]

For an unstructured mesh, the list of node indexes is specified, like this:

[1,2,3,4,..., N]

3.3. OPERATIONS OF PYTHON IN GOURMET 21

data value list : For scalar values, the list of values is specified as follows:

[1.2, 2.0,, 5.0]

For vector values, the list of lists as a vector value is specified as follows:

[[1.2,3.5,0.8],[1.0,3.0,0.5],....,[2.2,1.5,1.8]]

Or you may give the list of data locations directly.

[field.volume fraction.value[0], field.volume fraction.value[1],

field.volume fraction.value[2],.....,field.volume fraction.value[NxNyNz-1]]

Note: The index list list is omissible, such as index list list=None. That leads to the same result as the
node indexes given in creating a meshfield object is specified in ascending order to the index list list.

(3) How to get the value of each node

The scalar value of each node is got by the get() method, and the vector value is got by the getv()
method.

(3-1)In the regular mesh(structured mesh)

• For scalar value

mesh obj.get([i,j,k])

• For vector value

mesh obj.getv([i,j,k])

The getv() returns a vector value by Python list form.

The indexes list [i, j, k] shows the dividing point of the XYZ direction.

(3-2)In the unstructured mesh
Values are got with the node index as follows.

• For scalar value

mesh obj.get(id)

• For vector value

mesh obj.getv(id)

The getv() returns a vector value by Python list form.

(4) The contour drawing methods of the meshfield

The meshfield class has the methods corresponding to the functions introduced about the contour draw-
ings in Section 3.3.3.2.

• Specifying an isosurface

mesh obj.clevel(min value,max value,attribute id)

• Cancel of isosurfaces

mesh obj.delete clevel()

• Specifying the maximum and the minimum value which are drawn on a contour cross
section.

mesh obj.crange(min value,max value)

22 CHAPTER 3. USING PYTHON IN OCTA

• Specifying a cutting plane on which a contour is drawn

mesh obj.cplane(point on plane,normal vector)
mesh obj.cplane(point on plane, normal vector, attribute id)

• Cancel of cutting planes

mesh obj.delete cplane()

• Color specification for minimum and maximum values

mesh obj.ccolor(attribute id)

• Color specification corresponding to the value

mesh obj.dcolor(value list,attribute id list)
or
mesh obj.dcolor(value list,color list)

• Specifying which legend to display

mesh obj.legend()
As for the legend which shows correspondence of values and colors in a contour, only one is displayed
on the right end on the view screen of GOURMET. In the following case, two or more legendes are
created.
(1) Two or more meshfield objects are generated.
(2) The function ccolor() or dcolor() is called two or more times.
(3) To a meshfield object, the ccolor() or dcolor() method is called and more ccolor() or dcolor()
function is called.
The legend() method specifies one legend which you want to display from two or more legendes.
The priority of a legend display is as follows.
(1) Specification by the legend() method
(2) The legend generated from the function dcolor()
(3) The legend generated from the function ccolor()
(4) The legend of the meshfield which latest called the draw() method.
Note : When two or more legend() are called, the legend of the meshfield which latest called the draw()
method is displayed.

(5) Specifying the drawing conditions and the contour generation

field obj in python.draw(.......)

Executing this method generates a contour or an isosurface. The following drawing conditions are spec-
ified as arguments.

1. The number of skips in the case of skipping nodes of a mesh can be given.
skip = n

2. If drawing the frame lines of a mesh, the drawing attribute of a line is specified. The drawing attribute
number or the property list of a line is specified as follows. (The drawing attribute is introduced in
the following subsection.)
frame = line attribute id
or
frame = [red, green, blue, transparency]

3. If displaying a vector value by an arrow, the drawing attribute of an arrow is specified.
arrow = arrow attribute id
or
arrow = [red, green, blue, transparency, arrowhead radius, arrowhead height]

3.3. OPERATIONS OF PYTHON IN GOURMET 23

3.3.3.4 Drawing attribute

The display attribute, such as color or size of objects to draw, is shown by the drawing attribute values
specified to a drawing function. The drawing attribute is specified by a integer value as a drawing attribute
number or a drawing property list.

The drawing attribute numbers get related with the drawing property lists by a drawing attribute file.
If a drawing attribute file is not specified, the default values are used for drawings.

The format of a drawing attribute file is described below.

object keyword
ID property values
ID property values
...

The drawing object keywords are shown in following (1), and the drawing property list is shown in (2).

(1) Keywords
The keyword corresponding to the drawing object type is used.

LineAttr : Line(segment)
PointAttr : Point
PolygonAttr : Polygon
PolylineAttr : Polyline
DiskAttr : Disk
Ellipse1Attr : Ellipse(specifying a center)
Ellipse2Attr : Ellipse(specifying two focuses)
CylinderAttr : Cylinder
SphereAttr : Sphere
Ellipsoid1Attr : Ellipsoid(specifying a center)
Ellipsoid2Attr : Ellipsoid(specifying two focuses)
TetraAttr : Tetrahedron
CubeAttr : Cube
ArrowAttr : Arrow line
TextAttr : Text
CContourAttr : Gradating contour
DContourAttr : Discrete contour
ClevelAttr : Isosurface

(2) Properties list
* The values of a color (RGB, transparency) use the value between 0 and 1.

LineAttr : ID, color (RGB, transparency)

PointAttr : ID, color (RGB, transparency)

PolygonAttr : ID, color (RGB, transparency)

PolylineAttr : ID, color (RGB, transparency)

DiskAttr : ID, color (RGB, transparency), radius, normal vector (XYZ)

Ellipse1Attr : ID, color (RGB, transparency), length of axes(a,b), direction vector of axis a(XYZ), normal
vector (XYZ)

Ellipse2Attr : ID, color (RGB, transparency), length of the major axis(a), normal vector (XYZ)

CylinderAttr : ID, color (RGB, transparency), radius

SphereAttr : ID, color (RGB, transparency), radius

24 CHAPTER 3. USING PYTHON IN OCTA

Ellipsoid1Attr : ID, color (RGB, transparency), length of axes(a,b,c), direction vector of axis a(XYZ),
direction vector of axis c(XYZ)

Ellipsoid2Attr : ID, color (RGB, transparency), length of the major axis(a)

TetraAttr : ID, color (RGB, transparency)

CubeAttr : ID, color (RGB, transparency)

ArrowAttr : ID, color (RGB, transparency), arrowhead radius, arrowhead height, (scale factor of length
(note))

TextAttr : ID, color (RGB, transparency), PointSize

CContourAttr : ID, color for minimun value (RGB, transparency), color for maxium value (RGB, trans-
parency)

DContourAttr : ID, color (RGB, transparency)

ClevelAttr : ID, color (RGB, transparency)

The attribute numbers, ID, should have different integer values in the same drawing object type keyword
area. If the same ID value are in one drawing object type area, the first description in a attribute file is
used.

(Note) the ”length scale factor” is optional. It is 1, if it is not specified. It is not described in a drawing
attribute file.

The rule of a drawing attribute file is as follows:

1. Values are separated by one or more whitespaces.

2. A comment line is started with #.

3. If there are the same ID value in one drawing object type area, the first attribute value is used.

4. Default values is used when there is no drawing attribute file or the specified ID is not found.

The example of a drawing attribute file is shown below.

Shape Drawing Attribute
LineAttr
ID R G B TRANS
1 1.0 0.0 0.0 1.0
2 0.0 1.0 0.0 1.0
3 0.0 0.0 1.0 1.0
4 1.0 1.0 0.0 1.0
5 1.0 0.0 1.0 1.0
6 0.0 1.0 1.0 1.0
7 0.0 0.0 0.0 1.0
#######################
PointAttr
ID R G B TRANS
1 1.0 0.0 0.0 1.0
2 0.0 1.0 0.0 1.0
3 0.0 0.0 1.0 1.0
4 1.0 1.0 0.0 1.0
5 1.0 0.0 1.0 1.0
6 0.0 1.0 1.0 1.0
7 0.0 0.0 0.0 1.0

3.3. OPERATIONS OF PYTHON IN GOURMET 25

About how to pass the drawing properties list directly to a drawing function as arguments, the numeric
values except the attribute ID of the properties list are wrapped into a list and are passed to a drawing
function.

The examples are shown below:

line([1,1,1],[2,2,2],[1,0,0,1])
arrow([0,0,0],[0,0,1],[1,0,0,1,0.1,0.1])
arrow([0,0,0],[1,0,0],[1,0,0,1,0.1,0.1,2]) # With an optional length scale factor.
For the draw method of meshfiled.
meshf.draw(frame=[0,1,1,0.6],arrow=[1,0,0,1,0.1,0.1,1.5])

3.3.3.5 Cognac drawing class

The Cognac drawing class is a Python extension class for rapid drawing the UDF data of COGNAC in
GOURMET. COGNAC is a general purpose coarse-grained molecular dynamics program.

If a UDF data has the data structure shown below, the Cognac drawing class can be used for the UDF
data file.

Available data structure

In order to use the Cognac drawing class, molecule data, atom data and bond data need to have the
following relations.

molecule array--+--(1)The name of a molecule (string type)

|--(2)atom array--+--(3)The type of an atom (string or integer type)

| +--(4)The coordinate of an atom--+-- X (float or double type)

| |-- Y (float or double type)

| +-- Z (float or double type)

+--(5)bond array--+--(6)The type of a bond(string or integer type)

|--(7)The array index of an atom attached to

| the starting point of the bond (integer type)

+--(8)The array index of an atom attached to

the end point of the bond (integer type)

The UDF data name corresponding to (1) - (8) of the above figure is passed to the constructor of the COGNAC
drawing class.

In fact, these data do not need to be gathered in one compound data, for example, ”atom array” and ”bond
array” may be under another compound data. The relation among a molecule, an atom and a bond should just be
shown by the indexes of those arrays.

For example, a molecule at index [0] has a bond at index [0,0] and atoms at indexes [0,0] and [0,1], that is, the
indexes of atoms of the ends of a bond at [0,0] are [0,0] and [0,1].

The following UDF data names are specified in COGNAC.

(1)molecule_type_path=’Set_of_Molecules.molecule[].Mol_Name’

(2)atom_data_path=’Set_of_Molecules.molecule[].atom[]’

(3)atom_type_path=’Set_of_Molecules.molecule[].atom[].Atom_Type_Name’

(4)atom_position_path=’Structure.Position.mol[].atom[]’

(5)bond_data_path=’Set_of_Molecules.molecule[].bond[]’

(6)bond_type_path=’Set_of_Molecules.molecule[].bond[].Potential_Name’

(7)bond_atom1_id_path=’Set_of_Molecules.molecule[].bond[].atom1’

(8)bond_atom2_id_path=’Set_of_Molecules.molecule[].bond[].atom2’

The following sample is shown one molecule which consists of two atom, and the atom’s indexes are [0,0] and
[0,1].

\begin{def}

Set_of_Molecules:{

molecule[]:{

Mol_Name:string

atom[]:{

Atom_Name:string

26 CHAPTER 3. USING PYTHON IN OCTA

}

bond[]:{

Potential_Name:string

atom1:int

atom2:int

}

}

}

Structure:{

Position:{

mol[]:{

atom[]:{

x:float, y:float, z:float // coordinate

}

}

}

}

\end{def}

\begin{data}

Set_of_Molecules:{

[

{

"molecule1",

[{"atom1"},{"atom2"}]

[{ "bond1", 0, 1 }]

}

]

}

Structure:{

{

[

{

[{0,0,0}, {1,1,1}] // coordinate

}

]

}

}

\end{data}

Classes and methods

Cognac drawing class consists of an atom drawing class, a bond drawing class and a class for operating coordinates
of atoms.

Atom drawing class

• Object creation

An atom drawing object is created by the createAtom() method of the UDFManager class.

atom=createAtom(molecule type path,atom type path,atom data path,atom position path)

molecule type path : A UDF data path of a molecule name is specified. This is required for the classification
by color for each molecule.(optional)

atom type path : A UDF data path of an atom name is specified. This is required for the classification by
color for each atom.(optional)

atom data path : A UDF data path of atom compound data is specified.

atom position path : A UDF data path of the position-coordinate of an atom is specified. This is indis-
pensable.

• Drawing method

atom.draw(index=[],attr=-1,type=’line’,moltypedic=0,atomtypedic=0,coord=0)

index : The array indexes of atoms to draw are specified. Specifying [] (an empty list) draws all atoms, and
[i] draws the atoms belonging to the i-th molecule, and [i, j] draws one atom at [i,j].

3.3. OPERATIONS OF PYTHON IN GOURMET 27

attr : This specifies drawing colors. This is either a drawing attribute inumber, a drawing property list or
following keyword: ”atom”,”molname,”mol”. When a drawing attribute number or a drawing property
list is specified, an atom is drawn with the drawing attribute. When ”atom” is given, an atom is drawn
with a different color for a different atom name, and if atomtypedic is then given, an atom will be drawn
with the color specified by the dictionary object. In the case of ”mol”, even if a molecule name is the same
as other molecules, the atoms of a different molecule are drawn with a different color. In ”molname”, an
atom is drawn using a different color for a different molecule name or the attribute of moltypedic.

type : Drawing shape type is specified. One of the following words can be used : ”point”,”line”,”ball”,”ball-
stick”,”stick”,”rod”,”volume”.

The ”point” draws a point, and the ”ball” and ”ball-stick” draws a sphere as an atom.

As for ”line”, a point is drawn only in a monoatomic molecule, and a sphere is drawn for ”stick”, ”rod”
or ”volume” in the same case.

moltypedic : This is optional.
The drawing attributes for molecule names (specified by the molecule type path) are given by the Python
dictionary form.

atomtypedic : Optional. The drawing attributes for atom names (specified by the atom type path) is given
by the Python dictionary form, for example:

{”atom1”:1,”atom2”:2}.
coord : Optional. An object of the CognacCoord class is specified. It is used to change the coordinates of

atoms at the time of drawing. See Coordinate mapping.

• Methods for getting a coordinate

1. The coordinate of an atom is returned by a list

atom.getCoord(index)

2. The average of all coordinates or the average of the coordinates of atoms in a molecule is returned by a
list.

atom.averageCoord(index=())

Average of all coordinates : xyz = atom.averageCoord()

Average of the coordinates of atoms in a molecule : xyz = atom.averageCoord([3])

Bond drawing class

• Object creation

A bond drawing object is created by the createBond() method of the UDFManager class.

bond=createBond(molecule type path,atom type path,atom data path,atom position path,
bond type path,bond atom1 id path,bond atom2 id path,bond data path)

atom type path,atom data path,atom position path : These are the same as the atom.

bond type path : A UDF data path of a bond name is specified. This is required for the classification by
color for each bond name.

bond atom1 id path,bond atom2 id path : UDF data paths of the index data of the atom attached to
the starting and the end of a bond is specified respectively.

bond data path : A UDF data path of a bond compound data is specified.

• Drawing method

bond.draw(index=[],attr=-1,type=’line’,
moltypedic=0,atomtypedic=0,bondtypedic=0,coord=0,maxlen=0.0)

index : The array indexes of bonds to draw are specified. Specifying [] draws all bonds, and [i] draws the
bonds belonging to the i-th molecule, and [i, j] draws one bond at index [i,j].

attr : This specifies the drawing color. This is eather a drawing attribute number, a drawing property list or
following keyword: ”atom”,”bond”,”molname”,”mol”. When a drawing attribute number or a drawing
property list is specified, bonds are drawn with the specified drawing attribute. When ”atom” is given,
bonds are drawn with a different color for a different atom name, and if atomtypedic is then given, a
bond will be drawn with the color specified by the dictionary object. When ”bond” is given, bonds are
drawn with a different color for a different bond name, and if there is bondtypedic, it is similar to the
atomtypedic. In the case of ”mol”, even if a molecule name is the same as other molecules, the bonds
of the different molecule are drawn with the different color. In ”molname”, bonds are drawn using a
different color for each molecule name or the attribute of moltypedic.

28 CHAPTER 3. USING PYTHON IN OCTA

type : Drawing shape type is specified. One of the following words can be specified to this: ”line”(line),”ball-
stick”,”stick”,”rod”(rod),”volume”(ellipsoid)

The ”line” draws a segment, and the ”ball-stick”, ”stick” and ”rod” draws a cylinder.

When ”volume”, the ellipsoid which uses the ends of a bond as its focus points is drawn.

bondtypedic : Optional. The drawing attributes for bond names (specified by the atom type path) is speci-
fied in the Python dictionary form.

coord : Optional. An object of the CognacCoord class is given.

maxlen : Optional. The bonds are not drawn, if the bond length is more than the maxlen and the maxlen is
larger than 0.0.

Coordinate mapping

To draw an atom at the different position from the original coordinate, the index of an atom to change a position
and the coordinate after change are stored in this mapping object.

• Object creation

A coordinate mapping object is created by the CognacCoord() method of the UDFManager class.

coordmap=CognacCoord()

The mapping object is created. None is returned if it fails.

• Storing of an index and a coordinate

coordmap.set(index,coord)

index : The array index used as the key for search, in [i, j] or (i, j) form.

coord : The 3-dimensional coordinate value of the drawing position after change, in [x, y, z] or (x, y, z) form.

The dimension of index is returned if it succeeds, and None is returned if it fails.

• The number of coordinates stored in a mapping object is returned.

nsize = coordmap.size() nsize = len(coordmap)

• A coordinate is got from an index

coord = coordmap.get(index)

Chapter 4

Samples

This chapter introduces some samples of the UDFManager class.

4.1 Example of the UDFManager for Python

The following simple UDF data is red and edited using the methods of the UDFManager class.

sample.udf

\begin{def}

class Point:{

x:float

y:float

z:float

}

class Vertex:{

id:ID

position:Point

}

class Face: {

id : ID

vertex[] :<Vertex,ID>

}

parameter: {

vertex[]:Vertex

face[]:Face

value[]:float

}

\end{def}

\begin{data}

parameter:{

[{ 1,{0,0,0} }, { 2,{1,1,1} }, { 3, { 2,1,2} }, { 4,{3,1,2} }, { 5,{4,3,2} }]

[{ 10, [1,2,3] }, { 11, [2,3,4] }, { 12,[3,4,5] }]

[1,2,3,4,5,6,7,8]

}

\end{data}

\begin{record}{"Step 1"}

\begin{data}

parameter:{

[{ 1,{0,1,0} }, { 2,{1,2,1} }, { 3, { 2,1,0} }]

[{ 10, [1,2,3] }]

[1,2,3,4,5,6,7,8]

}

\end{data}

\end{record}

The execution and the response of the example of commands are shown below:

29

30 CHAPTER 4. SAMPLES

1: >>> from UDFManager import *

2: >>> ii=UDFManager("testdata/sample/sample.udf")

3: >>> print ii.totalRecord()

4: 1

5: >>> print ii.currentRecord()

6: -1

7: >>> ii.jump(0)

8: 0

9: >>> print ii.get("parameter.vertex[].position.x",[1])

10: 1.0

11: >>> print ii.get("parameter.vertex[2].position.x")

12: 2.0

13: >>> ii.put(3, "parameter.vertex[2].position.x")

14: 1

15: >>> print ii.get("parameter.vertex[2].position.x")

16: 3.0

17: >>> print ii.size("parameter.vertex[].position")

18: 3

19: >>> vtx = ii.get("parameter.vertex[2]")

20: >>> print vtx

21: [3, [3.0, 1.0, 0.0]]

22: >>> ii.insert(2, "parameter.vertex[3]")

23: 2

24: >>> vtx[0] = 4

25: >>> ii.put(vtx,"parameter.vertex[]",[3])

26: 2

27: >>> vtx[0] = 5

28: >>> vtx[1][2]=9

29: >>> ii.put(vtx,"parameter.vertex[]",[4])

30: 2

31: >>> print ii.get("parameter.vertex[].position")

32: [[0.0, 1.0, 0.0], [1.0, 2.0, 1.0], [3.0, 1.0, 0.0], [3.0, 1.0, 0.0],

[3.0, 1.0,9.0]]

33: >>> print ii.get("parameter.vertex[]")

34: [[1, [0.0, 1.0, 0.0]], [2, [1.0, 2.0, 1.0]], [3, [3.0, 1.0, 0.0]],

[4, [3.0, 1.0, 0.0]], [5, [3.0, 1.0, 9.0]]]

35: >>> ii.write("testdata/sample/new_sample.udf")

36: 1

37: >>> ii=0 # destruction

4.2 Example of Python in GOURMET

The UDFManager for Python formed script in the last section can be rewritten in the simplified form which can
be executed on the Python scripting window of GOURMET, like this:

print totalRecord()

print currentRecord()

jump(0)

print $parameter.vertex[1].position.x

print $parameter.vertex[2].position.x

$parameter.vertex[2].position.x = 3

print $parameter.vertex[2].position.x

print size("parameter.vertex[].position")

vtx = $parameter.vertex[2]

print vtx

insert(2, "parameter.vertex[3]")

vtx[0] = 4

$parameter.vertex[3] = vtx

vtx[0] = 5

vtx[1][2]=9

$parameter.vertex[4] = vtx

4.3. EXAMPLE OF DRAWING FUNCTIONS 31

print $parameter.vertex[].position

print $parameter.vertex[]

write("testdata/sample/new_sample.udf")

Before executing a script, the target UDF file needs to be opened with operations on GOURMET. Here is the
result of running the script:

1

0

1.0

2.0

3.0

3

[3, [3.0, 1.0, 0.0]]

[[0.0, 1.0, 0.0], [1.0, 2.0, 1.0], [3.0, 1.0, 0.0], [3.0, 1.0, 0.0], [3.0, 1.0, 9.0]]

[[1, [0.0, 1.0, 0.0]], [2, [1.0, 2.0, 1.0]], [3, [3.0, 1.0, 0.0]], [4, [3.0, 1.0, 0.0]],

[5, [3.0, 1.0, 9.0]]]

4.3 Example of drawing functions

How to pass coordinates and drawing attributes as arguments to a drawing function is shown below.

line([1,0,0],[1,1,1],[0,1,0,1])

line($parameter.vertex[0].position,$parameter.vertex[1].position,[1,0,0,1])

line($parameter.vertex[0].position,$parameter.vertex[1].position,2)

sphere($parameter.vertex[0].position.x,$parameter.vertex[0].position.y,

$parameter.vertex[0].position.z,[1,0,0,1,0.5])

Example of meshfield : 1. Regular mesh(structured mesh)

meshf=meshfield("regular",[[10,20],[0,20],[0,30]],[10,20,30])

nn=1

for i in range(0,11):

for j in range(0,21):

nn=nn+1

for k in range(0,31):

meshf.set([i,j,k],nn)

cplane([10,0,0],[1,0,0])

cplane([10,0,0],[0,1,0])

cplane([10,0,0],[0,0,1])

cplane([20,20,30],[1,0,0])

cplane([20,20,30],[0,1,0])

cplane([20,20,30],[0,0,1])

ccolor([1,0,0,1,0,0,1,1])

meshf.draw(frame=2,skip=1) # a contour is generated here.

Example of meshfield : 2. sphere

meshf=meshfield(’sphere’,[[0,30],[0,3.1415*2]],[4,12])

idxlist=[]

vallist=[]

for i in range(0,5):

for k in range(0,13):

idxlist.append([i,k])

vallist.append(i+k+1)

32 CHAPTER 4. SAMPLES

meshf.field(idxlist,vallist)

meshf.ccolor([1,0,0,1.0,0,0,1,1.0])

meshf.draw()

Example of meshfield : 3. Unstructured mesh

mlist=[]

mid=Location(’parameter.vertex[0].id’)

mpos=Location(’parameter.vertex[0].position’)

msiz=size(’parameter.vertex[]’)

for i in range(0,msiz):

zlist=[get(mid),mpos.str()]

mlist.append(zlist)

mid.next()

mpos.next()

elelist=get(’parameter.face[].vertex[]’)

mval=get(’parameter.value[]’)

MESHFIELD

mf=meshfield("triangle",mlist,elelist)

mf.field(None,mval[0:msiz])

mf.ccolor(color=1)

mf.draw()

	Chapter 1 Preface
	Chapter 2 Basic usage of Python
	Chapter 3 Using Python in OCTA
	3.1 About using Python in OCTA
	3.2 Extended module for UDF data operations the UDFManager for

Python
	3.3 Operations of Python in GOURMET

	Chapter 4 Samples
	4.1 Example of the UDFManager for Python
	4.2 Example of Python in GOURMET
	4.3 Example of drawing functions

