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Hydrodynamic interactions of self-propelled swimmers

John J. Molina,*a Yasuya Nakayamab and Ryoichi Yamamoto*a

The hydrodynamic interactions of a suspension of self-propelled particles are studied using a direct

numerical simulation method which simultaneously solves for the host fluid and the swimming particles.

A modified version of the “Smoothed Profile” (SP) method is developed to simulate microswimmers as

squirmers, which are spherical particles with a specified surface-tangential slip velocity between the

particles and the fluid. This simplified swimming model allows one to represent different types of

propulsion (pullers and pushers) and is thus ideal to study the hydrodynamic interactions among

swimmers. We use the SP method to study the diffusive behavior which arises due to the swimming

motion of the particles, and show that there are two basic mechanisms responsible for this phenomena:

the hydrodynamic interactions caused by the squirming motion of the particles, and the particle–particle

collisions. This dual nature gives rise to two distinct time- and length-scales, and thus to two diffusion

coefficients, which we obtain by a suitable analysis of the swimming motion. We show that the

collisions between swimmers can be interpreted in terms of binary collisions, in which the effective

collision radius is reduced due to the collision dynamics of swimming particles in viscous fluids. At short

time-scales, the dynamics of the swimmer is analogous to that of an inert tracer particle in a swimming

suspension, in which the diffusive motion is caused by fluid-particle collisions. Our results, along with

the simulation method we have introduced, will allow us to gain a better understanding of the complex

hydrodynamic interactions of self-propelled swimmers.
1 Introduction

Swimming microorganisms, from bacteria, to algal cells, to
spermatozoa, are ubiquitous in biological processes, and even
though the specic propulsionmechanism can vary, the motion
of these microswimmers is dened by two basic characteristics:
(1) they are moving at very low Reynolds number, where viscous
forces are dominant (inertial forces can be neglected), and thus
(2) the net force on the body (including the cilia or agella used
to generate the motion) is zero.1,2 Although we have a clear
understanding of how these organisms can generate motion,
the physical properties of a suspension of such swimmers are
still not completely understood.3–7 In particular, the rheological
properties show a non-trivial dependence on the concentration
of swimmers,8–10 which deviates considerably from that of inert
force-free colloidal particles.11 In addition, hydrodynamic
interactions among swimmers have also been shown to give rise
to collective motion.12,13 However, theoretical studies on such
phenomena have either neglected the role of hydrodynamic
interactions, or used only far-eld approximations.7,14

In addition to the biological interest of understanding the
hydrodynamic interactions of swimming microorganisms,
recent experimental work has shown how to design micro-
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motors which can swim in the absence of external elds thanks
to interfacial phoretic effects,15–19 which allow the particles to
transform the local chemical or thermal energy into mechanical
energy. Furthermore, the possibility of using these systems to
perform work, whether it be to transport cargo20,21 or separate
particle mixtures,22 has led to many recent experimental and
simulation studies. Although a simple theoretical framework
for these swimming systems, which can be used to study the
effect of the shape and surface properties on the swimming
motion, has already been proposed,23,24 the collective dynamics,
and in particular the role of the hydrodynamic interactions
remains an open question. In this paper, we present a direct
numerical simulation method (DNS) for self-propelled particles
which attempts to overcome this difficulty, by solving the
equations of motion for the host uid as well as the swimming
particles.

A detailed description of the swimming mechanism of real
microorganisms remains computationally prohibitive, particu-
larly if one is interested in the collective dynamics of such
systems; therefore, we must look for a simple generic swimmer,
which can be easily modeled, but which manages to reproduce
the basic ow properties of actual swimmers, such that the
hydrodynamic interactions are accurately reproduced. The
“squirmer” model we use was introduced over 50 years ago25,26

to study the propulsion of spherical ciliate particles, which
generate motion through the synchronized beating of an
envelope of cilia at their surface. Fortunately, on a mesoscopic
Soft Matter, 2013, 9, 4923–4936 | 4923
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scale, the effect of this surface motion can be replaced by a
specied slip velocity between the particle and the uid. In
addition, the parameters of the model can be tuned to mimic
different propulsion mechanism, allowing us to study the
hydrodynamic interactions of different (idealized) micro-
swimmers within a unied framework. We present a modied
“Smoothed Prole” method,27 previously developed to study
colloidal dispersions, which is capable of incorporating this
squirming motion by imposing the appropriate slip boundary
conditions at the surface of the particles. The advantage of this
method is that it allows us to accurately and efficiently include
the many-body hydrodynamic interactions among the particles,
and it can be easily extended to complex host uids.

In this work we study the effect of hydrodynamic interactions
on the dynamics of a suspension of self-propelled particles. The
swimming motion of the particles is known to give rise to a
diffusive behavior,28 even in the absence of thermal uctuations,
and a tracer particle placed in such a system will also undergo
diffusion.29,30 However, the nature of the diffusion is different in
both cases, as is evidenced by the different scaling behavior with
the concentration of swimmers.31 In the former case, the diffu-
sion is caused primarily by particle–particle collisions, while
the latter is due to the hydrodynamic interactions caused by the
squirming motion of the particles. By a suitable analysis of the
particle displacements, and the decay in the velocity uctua-
tions,we show that bothphenomena arepresent in themotionof
the squirmers themselves, as should be expected. We are thus
able to extract the two underlying time- and length-scales of the
system, corresponding to the two distinct diffusivemotions, just
from the particle trajectories. The importance of this cannot be
understated, as these two mechanisms (hydrodynamics and
particle collisions) are known to be fundamental in determining
the physical properties of swimming suspensions;32 addition-
ally, measuring tracer diffusion in dense suspensions experi-
mentally can be quite challenging, and the available simulation
methods for this are somewhat involved.31 Finally, using basic
results from kinetic theory, we analyze the collisions of the
swimmers to derive effective collision radii, which are shown to
be independent of concentration, and which depend only on the
squirming mode of the swimmers (i.e., the strength of the
pusher/puller character). Somewhat surprising is the fact that
these effective particle sizes are considerably smaller than the
actual size of the particles, which is a consequence of the colli-
sion dynamics of swimmers in viscous uids. This paper is
organized as follows: Section 2 introduces the mathematical
model of the swimmers and the simulation method, Section 3
validates the computational method against known analytical
results, and Section 4 presents the results of our study.
Fig. 1 Schematic representation of the propulsion mechanism and flow profiles
of a pusher and a puller, (a) and (b) respectively. These swimmers can be repre-
sented using Blake's squirming model, in which the detailed propulsion mecha-
nism is replaced by a specified slip velocity at the surface of the particles, (c) and
(d), for pushers and pullers, respectively.
2 The model and methods
2.1 Swimmer model: Blake's squirmers

We consider a simple model of self-propelled spherical swim-
mers, originally introduced by Lighthill25 and later extended by
Blake,26 which move due to a self-generated surface-tangential
velocity us. This specic mechanism was proposed as a model
for an ideal ciliate particle, in which the synchronized beating
4924 | Soft Matter, 2013, 9, 4923–4936
of the cilia at the surface gives rise to a net motion, in the
absence of any external elds. If one assumes that the
displacements of this envelope of cilia are purely tangential,
then the effective (time-averaged) slip velocity for these
squirmers is given by26

us
�
r̂
�
¼

XN
n¼1

2

n ðnþ 1ÞBn

�
ê$r̂r̂� ê

�
P 0

n

�
ê$r̂

�
(1)

where ê is the squirmer's xed swimming axis (i.e., we consider
that each squirmer carries with it axed coordinate systemwhich
determines its preferred swimmingdirection at each instant), r̂ is
aunit vector fromtheparticle center toapointon the surface,P 0

n is
the derivative of the n-th order Legendre polynomial, andBn is the
amplitude of the corresponding mode. Neglecting all squirming
modes higher than three, Bn ¼ 0 (n $ 3), the following simple
expression for the surface tangential velocity, as a function of the
polar angle q ¼ cos�1(r̂$ê), is obtained

usðqÞ ¼ B1

�
sin qþ a

2
sin 2q

�
q̂ (2)

where a ¼ B2/B1 determines whether the swimmer is a pusher
(a < 0) or a puller (a > 0). An example of the former are sper-
matozoa and most bacteria, of the latter the unicellular alga
Chlamydomonas. A schematic representation of the ow prole
generated by these two types of swimmers is given in Fig. 1.
Although the squirmer model we adopt forgoes describing the
detailed propulsion mechanism, it is capable of distinguishing
between pushers/pullers and provides an adequate approxi-
mation to the far-eld ow prole generated by these swim-
mers. For Newtonian uids, which is the only case considered
here, the swimming speed U of the squirmer is determined
uniquely by the rst mode B1, irrespective of the size of the
This journal is ª The Royal Society of Chemistry 2013
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particle, as U ¼ 2/3B1, while the second mode gives the strength
of the stresslet.33,34 The velocity eld generated by a single such
squirmer, in the Stokes regime, was solved analytically by Ish-
ikawa et al.33 and is given, in the laboratory frame (uid at rest
far away from the particle), by

uðrÞ ¼ B1

a2

r2

�
a

r

�
2

3
êþ sin qq̂

�

þa

2

��
a2

r2
� 1

��
3cos2 q� 1

	
r̂þ a2

r2
sin 2qq̂


�
(3)

where a is the radius of the particle. Notice that for neutral
swimmers (a ¼ 0) the velocity eld decays as r�3, while for
pushers/pullers (a s 0) the velocity eld decays as r�2. In
contrast, the velocityeld for a sedimenting particle (or a particle
experiencing a net body force) decays as r�1.35 This will have
important consequences when considering the hydrodynamic
interactions of suspensions of swimmers. Finally, although the
squirmer model might seem overly simplistic, recent experi-
mental work, focusing on spherical droplets which propel due to
self-generated Marangoni stresses at their surface, has shown
that it is possible to create such swimmers articially.36
† For numerical stability we use quaternions, and not rotation matrices, to
represent the rigid body dynamics of the particles.
2.2 Simulation method: basic equations

We propose a direct numerical simulation (DNS) procedure to
study a system of self-propelled squirmers based on the
“Smoothed Prole” (SP) method,27,37 which allows one to effi-
ciently solve both the Navier–Stokes equation (NS), for the uid
motion, and the Newton–Euler equations, for the colloids. This
method has been successfully used to study the diffusion,
sedimentation, electro-hydrodynamics, and rheology of
colloidal dispersions in incompressible uids,38–41 and recent
work has shown how it can be extended to treat compressible
uids within a uctuating-hydrodynamics approach.42 A
detailed error analysis of the method can be found in ref. 43.
The basic idea is to replace the sharp boundary at the colloid–
uid interface with a diffuse interface of nite thickness z. This
allows one to discretize the system using a xed Cartesian
coordinate grid, since the interface will always be supported by
multiple-grid points. Although a loss of accuracy at the surface
of the particle is inevitable, we can easily impose periodic
boundary conditions (PBC), and use a Fourier spectral method
to solve for the uid equations of motion. The particles in the SP
method are not treated as boundary conditions for the host
uid, but rather as a body force in the NS equation. Thus, we
avoid the mesh-reconstruction problems that plague most
computational uid dynamics methods for systems with
moving boundaries. We are aware of two alternative simulation
methods that aim to describe these squirmer suspensions at the
same level of description, the rst was developed by Ram-
achandran et al.44 using a Lattice Boltzmann (LB) model, and
the second was originally introduced by Downton and Stark45

within a multi-particle collision dynamics (MPC) framework,
and later extended by Götze and Gompper46 to recover the
correct rotational dynamics. Although the implementation
details are specic to each of the models (LB, MPC, SP), the
This journal is ª The Royal Society of Chemistry 2013
general mechanism used to obtain the squirming motion is the
same in all three cases: local conservation of momentum. For
the moment though, these DNS approaches have not been
extensively used to study these types of swimming systems; the
most popular methods, which still account for the hydrody-
namic interactions, have usually been based on Stokesian
Dynamics,8,28,31,33,47–49 and are thus limited to Newtonian uids
in the Stokes regime.

In what follows, we briey review the governing equations for
a dispersion of inert colloids in a simple Newtonian-uid,
before considering how the equations must be modied for use
with the SP method for swimming particles with slip boundary
conditions. The formulation we present closely follows that of
ref. 37, in which a more detailed description of the computa-
tional algorithm can be found. The motion of the host uid is
determined by the Navier–Stokes equation with the incom-
pressibility condition

V$uf ¼ 0 (4)

r(vt + uf$V)uf ¼ V$s (5)

where r is the total mass density of the uid, uf is the host uid
velocity eld, and s is the stress tensor

s ¼ �pI + s0 (6)

s0 ¼ h[Vuf + (Vuf)
t] (7)

with h the shear viscosity of the uid. Consider a mono-disperse
system of N-spherical particles, of radius a, mass Mp, and
moment of inertia Ip ¼ 2/5Mpa

2I (with I the unit tensor). The
evolution of the colloids is given by the Newton–Euler
equations,50

_Ri ¼ V i
_Qi ¼ skewðUiÞQi

Mp
_V i ¼ FH

i þ FC
i þ Fext

i Ip$ _Ui ¼ NH
i þN ext

(8)

where Ri and Vi denote the center of mass position and velocity
of particle i, respectively, Qi is the orientationmatrix† andUi the
angular velocity, with skew (Ui) the skew-symmetric angular
velocity matrix

skewðUiÞ ¼
0
@ 0 �Uz

i U
y
i

Uz
i 0 �Ux

i

�U
y
i Ux

i 0

1
A (9)

The forces on the particles are comprised of hydrodynamic
contributions arising from the uid–particle interactions FH,
the colloid–colloid interactions due to the core potential of the
particles FC (which prevents particle overlap), and a possible
external eld contribution F ext (such as gravity). Likewise, the
torques on the particles can be divided into a hydrodynamic NH

and an external contribution N ext (for simplicity, the particle–
particle interactions are assumed to be given by a radial
potential). In what follows we consider buoyancy-neutral
Soft Matter, 2013, 9, 4923–4936 | 4925
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particles, so that F ext ¼ Next ¼ 0. Finally, conservation of
momentum between the uid and the particles implies the
following hydrodynamic force and torque on the i-th particle

FH
i ¼ Ð

dSi$s (10)

NH
i ¼ Ð

(x � Ri) � (dSi$s) (11)

where
Ð
dSi indicates an integral over the particle surface.
2.3 Simulation method: smoothed prole squirmers

We now present the computational algorithm used to simulate
themotion of spherical particles, with a given surface tangential
slip velocity us, using the SP method. We require that all eld
variables be dened over the entire computational domain
(uid + particle). The concentration eld for the colloids is given
as f(x,t) ¼ PN

i¼1fi(x,t), where fi ˛ [0, 1] is the smooth prole
eld of particle i. This eld is dened such that it is unity within
the particle domain, zero in the uid domain, and smoothly
interpolates between both within the interface regions. Details
on the specic denition and the properties of this prole
function can be found in ref. 27. The particle velocity eld is
dened in a similar fashion, as

fupðx; tÞ ¼
XN
i¼1

�
V iðtÞ þUiðtÞ � riðtÞ



fiðx; tÞ (12)

with ri ¼ x � Ri, which allows one to dene the total uid
velocity eld as

u(x,t) h (1 � f)uf + fup (13)

where the incompressibility condition is satised on the entire
domain V$u ¼ 0. The evolution equation for u is then derived
assumingmomentum-conservation betweenuid andparticles27

r(vt + u$V)u ¼ V$s + rffp + rfsq (14)

where ffp represents the force density eld needed to maintain
the rigidity constraint on the particle velocity eld and fsq is the
force density eld generated by the particles' squirmingmotion.

We use a fractional step approach to update the total velocity
eld. Let un be the eld at time tn ¼ nh (h is the time interval).
We rst solve for the advection and hydrodynamic viscous
stress terms, and propagate the particle positions (orientations)
using the current particle velocities. This yields

u* ¼ un þ
ðtnþh

tn

dsV$

�
1

r

��p*I þ s0	� uu

�
(15)

Rnþ1
i ¼ Rn

i þ
ðtnþh

tn

dsV i (16)

Qnþ1
i ¼ Qn

i þ
ðtnþh

tn

dsskewðUiÞQi (17)
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where the pressure term p* in eqn (15) is determined by the
incompressibility condition V$u* ¼ 0. The remaining updating
procedure applies to the slip condition at the particle boundary
and the rigidity constraint on the velocity eld.

We now consider the momentum change needed to main-
tain the slip velocity at the surface of each of the squirmers,
where the slip prole us is imposed with respect to the particle
velocities {V 0

i ;U
0
i}, using the previously updated positions and

orientations {Rn+1
i ;Qn+1

i }. We note that at this point we do not yet
know the updated particle velocities {V n+1

i ;Un+1
i }, which are the

values that should be used when enforcing the surface slip
prole V 0

i ¼ V n+1
i (U 0

i ¼ Un+1
i ). Therefore, we adopt an iterative

solution, and as an initial guess, we use the particle velocities at
the previous time step, i.e., V 0

i ¼ Vn
i (U

0
i ¼ Un

i ). The updated total
velocity eld is now

u** ¼ u* þ
2
4 ðtnþh

tn

dsf sq

3
5 (18)

2
4 ðtnþh

tn

dsf sq

3
5 ¼

XN
i¼1

4i

�
V

0
i þU

0
i � ri þ usi � u*

	

þ
XN
i¼1

fiðdV i þ dUi � riÞ � h

r
Vpsq (19)

The second term on the right hand side of eqn (19)
imposes the slip velocity prole us at the surface of each of
the squirmers; where 4i f (1 � fi)|Vfi| is a smooth surface
prole function which is non-zero only within the interface
domain of the squirmer (normalized such that |Vfi| has a
maximum value of one), and zero everywhere else. The third
term adds a counter-ow entirely within the particle domain,
in such a way that local momentum conservation is obtained.
Assuming rigid-body motion, with velocities dVi and dUi, this
requires

Ð
dxfi(dVi + dUi � ri) ¼ �Ð

dx4i(V
0
i + U

0
i � ri + usi � u*) (20)

Ð
dxri � fi (dVi + dUi � ri) ¼ �Ð

dxri � 4i(V
0
i + U

0
i � ri

+ usi � u*) (21)

from which we can easily obtain the counter-ow terms dVi

(dUi) from the particle velocities V 0
i (U 0

i). A schematic repre-
sentation of this procedure, used to enforce the specic slip-
boundary conditions for our model squirmers, is shown in
Fig. 2. Finally, the pressure term due to the squirming motion
psq is obtained from the incompressibility condition V$u** ¼
0. At this point, the momentum conservation is solved for the
total velocity eld.

The hydrodynamic force and torque exerted by the uid on
the colloids (which includes all contributions due to the
squirming motion) is again derived by assuming momentum
conservation. The time integrated hydrodynamic force and
torque over a period h are equal to the momentum exchange
over the particle domain
This journal is ª The Royal Society of Chemistry 2013
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Fig. 2 Schematic representation of the updating scheme used to enforce
the slip boundary condition at the surface of the squirmers. Each particle is
considered to exert a force on the fluid at the surface, in order to maintain
the specified flow profile us (red arrows) for the squirming motion. To ensure
local momentum conservation, a counter-flow is added within the particle
domain (blue arrows).

Paper Soft Matter
2
4 ðtnþh

tn

ds
�
FH

i þ Fsq
i

�35 ¼
ð
dx rfnþ1

i

�
u** � unp

�
(22)

2
4 ðtnþh

tn

ds
�
NH

i þN sq
i

�35 ¼
ð
dx

�
rnþ1
i � rfnþ1

i

�
u** � unp

	�
(23)

From this and any other forces on the colloids, the particle
velocities are updated as

nþ1
i ¼ Vn

i þMp
�1

2
4 ðtnþh

tn

ds
�
FH

i þ Fsq
i

�35þMp
�1

2
4 ðtnþh

tn

ds
�
FC

i þ Fext
i

�35
(24)

Unþ1
i ¼ Un

i þ Ip
�1$

2
4 ðtnþh

tn

ds
�
NH

i þN sq
i

�35þ Ip
�1$

2
4 ðtnþh

tn

dsN ext
i

3
5
(25)

We recall that we have imposed the slip prole us with
respect to the primed velocities {V 0

i ;U
0
i}, which need not be

equal to the nal velocities of the particle at step n + 1. To
maintain consistency, we iterate over eqn (18)–(25) until
convergence in the velocities is achieved. Finally, the resulting
particle velocity eld fn+1un+1p is enforced on the total velocity
eld as

unþ1 ¼ u** þ
2
4 ðtnþh

tn

dsf f p

3
5 (26)

2
4 ðtnþh

tn

dsf f p

3
5 ¼ fnþ1

�
unþ1
p � u**

	� h

r
Vpp (27)

with the pressure due to the rigidity constraint obtained from
the incompressibility condition V$un+1 ¼ 0. The total pressure
eld is then given by p ¼ p* + pp + psq.
This journal is ª The Royal Society of Chemistry 2013
2.4 Choosing the relevant reference frame

Although we have not included thermal uctuations in our
system, the swimming motion of the particles is known to give
rise to diffusive behavior at sufficiently high particle concen-
trations.28 However, due to the self-propelled nature of the
particles, the largest contribution to their displacement will
naturally come from the their inherent swimming. As such, one
must wait a very long time before the particles exhibit any type
of diffusive behavior, and even then, it is difficult to establish
what role the hydrodynamic interactions among neighboring
particles are playing. All particles will be swimming in the ow
eld generated by their neighbors, and the interactions among
them can give rise to motion perpendicular to the particle's
preferred swimming direction, as well as provide a momentary
impulse that can increase/decrease the velocity parallel to the
swimming axis, or even change its orientation in space. In order
to better understand this phenomena, we analyze the particle
motion with respect to the frame of reference of the moving
squirmers, as was proposed by Han et al.51 to study the Brow-
nian motion of ellipsoidal particles. We begin by decomposing
the particle trajectories in terms of displacements between
successive time intervals, which we take to be equally spaced. If
R(tn) denotes the position of a tagged particle at time step n (tn¼
ndt, with dt a suitably small time interval), we can express the
time evolution of its position {R(ti)} as(

Rðt0Þ;Rðt0Þ þ D1;.;Rðt0Þ þ
Xi

j¼1

Dj ;.;Rðt0Þ þ
Xn

j¼1

Dn

)
(28)

where Di ¼ R(ti) � R(ti�1). Using this notation, the translational
diffusivity is given as52

DTðtnÞ ¼ 1

6ndt

D�
RðtnÞ � Rðt0Þ

	2E ¼ 1

6ndt

*"Xn

i¼1

Dn

#2+
(29)

To study the coupling between translation and rotation of
the particles, we will also consider the rotational diffusivity,
dened as

DRðtnÞ ¼ 1

6ndt

D�
w
�
tn
	� wðt0Þ

	2E
(30)

wðtnÞ ¼
ðtn
t0

dsU ðsÞ (31)

where w is the unbounded rotational displacement of the
particle.

In order to separate the “random” contribution given by the
surrounding conguration from the particle's own swimming
motion, we consider the displacements within the body frame
of reference,

ĉi ¼ Qt
i�1Di (32)

where tildes are used to denote quantities with respect to the
coordinate-system attached to each of the squirmers (ê1,ê2,ê3),
with ê3 the preferential swimming axis (see Fig. 3). The advan-
tage of this approach is illustrated in Fig. 4, where the trajectory
Soft Matter, 2013, 9, 4923–4936 | 4927



Fig. 4 Trajectory of a single particle in a suspension of pullers a ¼ +2 at f ¼ 0.1.
(a) The real lab-space trajectory of the particle, and (b) the body-space trajectory.
The latter is constructed by transforming the individual particle displacements to
the frame of reference of the particle, and expressing them in terms of
displacements parallel and perpendicular to the particle's swimming axis ê3. In
addition, the (parallel) motion due to the average swimming speed, Dx(t) ¼
hV$ê3it, has been removed. Thus, (b) gives the random motion induced on the
particle by the local fluctuations in the surrounding flow field. The length scale is
given by the particle radius a/D ¼ 5 and the projections of the trajectories onto
the bottom plane have been added as a visual guide.
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of a single particle, from a suspension of pushers a ¼ +2 at f ¼
0.1, is given in both representations: with respect to the lab- and
body-space displacements. One can immediately see where the
difficulty in analyzing the particle motion comes from, as the
length scales for the directed (swimming) and uctuating
motion differ by an order of magnitude. We dene an addi-
tional effective hydrodynamic diffusivity ~DT, in terms of these
perpendicular and parallel displacements, as

~D
t

T ðtnÞ ¼
1

4 ndt

*"Xn

i¼1

~D
t

i

#2+
(33)

~D
k
TðtnÞ ¼

1

2 ndt

*"Xn

i¼1

~D
k
i � ndtU

#2+
(34)

~DTðtnÞ ¼ 1

3

�
2 ~D

k
TðtnÞ þ ~D

t

T ðtnÞ
�

(35)

where the second term inside square brackets in eqn (34) is
required to remove the (average) contribution to the particle
displacements from the inherent swimmingmotion (U¼ hV$ê3i is
the average velocity along the particle's swimming axis). These
diffusivities provide a direct measure of the strength of the
hydrodynamic interactions among the squirmers. The corre-
spondingdiffusioncoefficients canbeobtained fromthe long-time
limit (assuming a plateau has been reached and the limit exists)

DT ¼ lim
t/N

DTðtÞ (36)

DR ¼ lim
t/N

DRðtÞ (37)

~DT ¼ lim
t/N

~DTðtÞ (38)

Since the parallel and perpendicular effective diffusion coef-
cients, ~Dk

T and ~Dt
T , exhibit no deviation from isotropic behavior

(although this could be expected to change if persistent long-
range order appears), we only consider the average effective
diffusion coefficient ~DT. A similar analysis can be performed for
Fig. 3 Analysis of the particle displacements with respect to the particle's
moving coordinate frame. The particle displacement D during a given time
interval is decomposed into its components parallel ĉk and perpendicular ĉt to
the swimming axis. For a single isolated squirmer ĉt ¼ 0 for any given time
interval; for a suspension of swimmers the flow induced by the neighboring
particles gives rise to non-zero perpendicular displacements.
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the rotational diffusivities, in order to study the rotations about
the three particle axes independently, but it provides no addi-
tional information and will not be presented here.

Finally, we also consider the velocity auto-correlation
functions52

CV(t) ¼ hV(t)$V(t0)i (39)

CU(t) ¼ hU(t)$U(t0)i (40)

and in particular, the correlation functions for the velocity
components parallel and perpendicular to the swimming axis

C
k
V(t) ¼ hVk(t)$Vk(t0)i (41)

~C
k
V(t) ¼ h ~Vk(t)$ ~Vk(t0)i (42)

~Ct
V (t) ¼ h ~Vt(t)$ ~Vt(t0)i (43)
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Although eqn (41) and (42) both measure the correlations of
the parallel velocity components, the former does so within the
xed lab frame, while the latter uses the moving body frame.
Therefore, the rst will be sensitive to changes in themagnitude
and direction of the velocity vector, while the second will only
register changes in the magnitude. At short times, we can expect
the decay in correlations of the parallel velocity components to
be determined by the local conguration of the suspension
(where the ow generated by the nearby particles can act to
enhance or suppress the swimming motion), and at long times
by the particle collisions, which will reorient the particle's
swimming direction. This means the initial decay should be the
same for both Ck

V and ~Ck
V, since the particle has not had time to

reorient itself; at long times however, correlations measured
within the lab frame of reference should decay to zero, whereas
those measured within the body reference should reach a nite
value (determined by the average swimming speed of the
squirmers). For the decay in correlations of the perpendicular
velocity components ~Ct

V we expect a behavior analogous to the
short-time decay of the parallel components, since it is due
entirely to the ow eld generated by the neighboring squirm-
ers. We note that a similar analysis has been successfully used
to study the interplay between hydrodynamic and Brownian
uctuations on the motion of (inert) sedimenting colloids.53
Fig. 5 Swimming speed of an isolated squirmer in a periodically replicated cubic
simulation box of length L/D ¼ 128 at Re ¼ 0.01 as a function of time (in simu-
lation units). (a) Neutral swimmer at various particle sizes a/D. (b) Puller of size
a/D ¼ 6 for various swimming modes 0 # a # 5. Velocities are scaled by the
theoretical value for the swimming speed U ¼ 2/3B1.
3 Validation

The rst obvious test of our simulation method is to make sure
that an isolated swimmer will move at the expected velocity U ¼
2/3B1, regardless of the particle size or the value of the second
squirming mode B2. We performed simulations for a single
squirmer, inside a periodically replicated cubic simulation box
of dimension L ¼ 128D (D is the grid spacing), for various
particles sizes and squirming modes. Fig. 5 shows the results
obtained for a neutral squirmer (a ¼ 0), for particle sizes a/D ¼
4, 5, 6, 8, and for various pullers (a > 0), with a particle size of
a/D ¼ 6. The particle Reynolds number Re ¼ rUa/h and the
width of the diffuse interface z/D were the same for all the
simulations, 0.01 and 2, respectively. In all cases, the particle's
(average) swimming velocity shows excellent agreement with
the theoretical predictions. For the neutral squirmers, the
swimming velocity is within x2% of the exact value, regardless
of the particle diameter, although the speed shows a small
decrease with increasing particle size. The small oscillations
exhibited by the velocity are due to discretization errors, as the
number of grid points on the two hemispheres of the particle
surface will vary depending on the relative position of the
particle center within the computational bins. Similar agree-
ment is obtained for the pullers (pushers), although the dis-
cretization error increases with increasing rar (at xed particle
size a/D). As such, for the system sizes we have considered, we
are limited to moderate values of rar ( 5.

To verify that the velocity eld generated by our SP squirmers
is correct, we compare with the exact (at Re ¼ 0) analytical
expression given in eqn (3). The steady-state velocity elds
generated by a single squirmer (L/D¼ 128, A/D¼ 6, z/D¼ 2, a¼
+2, Re¼ 0.01), along with the corresponding stream line plot (in
This journal is ª The Royal Society of Chemistry 2013
the lab and particle reference frames), are shown in Fig. 6.
Excellent agreement with the analytical results is obtained,
although differences in the stream lines arise at large distances
r/ax 4 for qx�p/4 (with respect to the swimming axis +ẑ). Even
though the uid velocity within these regions is vanishingly
small (compared to the swimming speed of the squirmer), a clear
systematic deviation is observed in the direction of the stream
lines. This is due to our use of periodic boundary conditions,
which causes the stream lines to close in on themselves, in order
to match at the boundaries of the simulation cell. A similar
deviation is observed for the velocities along the swimming
direction, but these occur at much larger distances.

FollowingGötze andGompper,46we consider the interactions
between twoxed squirmers at a distance r from each other, with
parallel orientations. Fig. 7 shows the results we have obtained
for the force parallel to the displacement vector between two
pullers (perpendicular to their swimming axes), normalized by
the Stokes force FS¼ 6phaU for an inert particlemoving with the
same velocity (U ¼ 2/3B1). The simulations were carried out at
Re ¼ 0.01 for a box size of L/D ¼ 128, with a particle radius of
a/D ¼ 6, and a swimming mode a ¼ +2. The functional form for
this perpendicular force has been given by Ishikawa et al.33

Fnear f log(3) (44)
Soft Matter, 2013, 9, 4923–4936 | 4929



Fig. 6 Azimuthally averaged steady-state fluid velocities for a single puller a ¼
+2 of size a/D ¼ 6 swimming along the ẑ-axis, within a periodically replicated
cubic simulation box of size L/D ¼ 128. (a) Fluid velocity vectors within the
laboratory frame, the red and blue arrows show the simulation and analytical
results, respectively. (b) Fluid velocity stream lines within the laboratory frame, the
colored lines (color-coded with respect to the magnitude of the velocity) repre-
sent the analytical solution, while the gray lines show the simulation results. (c)
Same as (b) but within a reference frame moving with the particle. Due to dis-
cretization errors, streamlines can begin/end at the fluid–particle interface.
Length scales have been scaled by the particle radius.

Fig. 7 Perpendicular force felt by two (fixed) parallel squirmers (a ¼ +2), of diam-
eters/D¼10and interface thickness z/D¼2,asa functionofdistance r, forRe¼0.01
and a system size of L/D¼ 128. The dashed (yellow) line gives the fit to the expected
functional form F/Fs¼Aln(r/s� 1) of thenear-field force,withA¼�0.327,while the
dotted (violet) line gives the (exact) far-field force. All forces are normalized by the
Stokes force for an inert sphere with the same speed (U ¼ 2/3B1).
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where 3¼ r� s is the minimum separation distance between the
surface of the particles (with s ¼ 2a the particle diameter). Addi-
tionally, they also obtained exact far-eld expressions for the force
between the two squirmers from a generalization of Faxen's laws,

Ffar ¼ 3ps3aB1

16r2
(45)

At short distances the repulsive force experienced by the two
squirmers is seen to follow the expected scaling relationship up
4930 | Soft Matter, 2013, 9, 4923–4936
to r ( 1.5s, while the far-eld force is approached asymptoti-
cally for r T 3s. The force is observed to be proportional to the
swimming mode, such that F f a and F(a) ¼ �F(�a).
4 Results and discussions
4.1 Diffusion coefficients

We have studied the diffusive behavior of a semi-dilute
suspension of identical non-buoyant squirmers, for various
concentrations f # 0.124 (with f ¼ 4pa3N/3V the packing
fraction) and squirming modes a ¼ 0, �1, �2. We work in
reduced units, in which the density and viscosity of the host
uid are unity r ¼ m ¼ 1. All simulations were performed for
squirmers of radius a/D¼ 5 (interface width z/D¼ 2), in a cubic
simulation box of length L/D ¼ 64, for a particle Reynolds
number of Re ¼ rUa/m ¼ 0.05 (U is the swimming speed of an
isolated squirmer). Although our systems are not very large L/a
� 12, nite size effects have been shown to be small,28 and since
we will be mainly focused on studying the short-range hydro-
dynamic interactions among particles, they can be safely
ignored. In what follows, all quantities are presented in non-
dimensionalized form, using as characteristic length, speed,
and time units the particle radius a, swimming speed U¼ 2/3B1,
and the time required for an isolated squirmer to move a
distance equal to its radius T ¼ a/U.

The diffusivities DT(t) and ~DT(t), dened in eqn (29) and (35),
for a system of pullers (a ¼ +2), at various concentrations, are
shown in Fig. 8. The standard diffusivities DT(t) show a ballistic
regime which extends to very long times tx 100, aer which the
slope starts to decrease, indicating a transition towards a
diffusive regime. However, purely diffusive motion (slope of
zero) is only obtained for the highest concentrations and alpha
values. This behavior has been analyzed in detail in ref. 28. In
contrast, ~DT(t) reaches the diffusive regime at much shorter
times, for all concentrations and all non-zero values of alpha.
We note that both quantities are measuring related
This journal is ª The Royal Society of Chemistry 2013
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phenomena, but the latter does so directly, since the motion
due to the inherent particle swimming has been removed from
the analysis. As a function of concentration, ~DT shows a clear
increase, which is consistent with the interpretation of the
diffusive motion being caused by interactions with neighboring
particles: as the concentration increases, so does the number of
neighbors, and thus the strength of the interactions. In
contrast, we see that DT decreases with concentration. The
reason for this is simple, since DT mainly measures the effect of
the particles' own swimming, an increase in the diffusive
behavior can only hinder this motion. The rotational diffusiv-
ities DR, also shown in Fig. 8, present the same basic features as
~DT, the onset of the diffusive regime is obtained within the same
time interval and they exhibit a similar concentration depen-
dence. Apart from a difference in scale, there is no clear
differentiating factor between these two quantities. Similar
results are obtained for all other non-zero values of a consid-
ered; where, as was pointed out by Ishikawa and Pedley,28 the
effect of increasing (decreasing) a is the same as that of
increasing (decreasing) the concentration, at least with respect
Fig. 8 Translational and rotational diffusivities for a system of pullers (a ¼ +2) at
various concentrations. (a) Translational diffusivities obtained from the mean-
squared displacements in the fixed-lab reference frame DT(t), and the body frame
~DT(t) (with the displacement due to the intrinsic swimming motion suitably
removed), dashed and solid lines, respectively; and (b) the rotational diffusivities
DR(t). Lines of slope one, corresponding to purely ballistic motion, have been
drawn for comparison. The arrows show the increase/decrease of the various
diffusivities as a function of concentration f.

This journal is ª The Royal Society of Chemistry 2013
to the diffusive motion of the squirmers, since they both lead to
an increase (decrease) in the strength of the hydrodynamic
interactions among particles.
4.2 Velocity uctuations and correlations

To have a better understanding of the how the diffusive motion
arises, we now consider the single particle velocity correlation
functions dened in eqn (39)–(43). We present in detail the
results obtained for a system of pullers (a ¼ +2) at f ¼ 0.124,
shown in Fig. 9, but the same analysis applies for the other
values of f(a) we have studied. The standard denition of the
velocity auto-correlation CV(t) results in a function that shows a
two-time decay process, as evidenced by the shoulder that
appears around 1 < t < 10. The initial decay (t x 1) is due to the
changing conguration of neighboring particles (and their self-
generated ow eld), while the second, long time decay (tx 10)
arises due to the reorientation of the particles' swimming
direction, which is a consequence of the particle–particle
collisions. Conrmation for this interpretation is provided by
the three other correlation functions we have dened. Consider
rst the decay in correlations of the parallel velocity compo-
nents, Ck

V(t) (lab frame) and ~Ck
V (particle frame). Both functions

show the same initial decay, caused by local uctuations in the
velocity eld, as the particle has not experienced any signicant
change in its swimming direction. However, at longer times,
these two functions show a completely different behavior. The
parallel correlations measured within the xed lab system Ck

V(t)
exhibit a slow (long-time) decay before eventually collapsing
onto the full correlation function CV(t); the deviations at long
times t > 50 are due to statistical uncertainties in our data. In
contrast, the correlations measured within the particle's frame
of reference reach a plateau aer the initial decay. This means
that while the particle is constantly reacting to the ow eld
generated by its neighbors, by changing it's swimming speed,
these uctuations decay very fast, typically within the time it
takes for the particle to travel its diameter (the characteristic
Fig. 9 Single-particle velocity time-correlation functions for a system of pullers
(a ¼ +2) at f ¼ 0.124. The two-time relaxation approximation to the velocity
correlation function C(2)V (t)/CV(0) (eqn (46)), with the amplitudes and relaxation
times obtained from the simulation, is also shown (dash-dot red line).
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length over which the ow eld varies signicantly). As such,
the long-time decay in both CV(t) and ~Ck

V(t) is due primarily to
changes in the orientation of the swimming direction, and not
to changes in the magnitude of the swimming speed. As
expected, the correlations in the perpendicular velocities ~Ct

V (t)
show a very fast decay, over a characteristic time equal to that of
the initial short-time decay of the parallel velocity components.
The decay in correlations of the angular velocity CU(t) (not
shown) presents the same characteristic behavior as ~Ct

V (t).
Finally, the characteristic times ss and sl for these two

processes, governed by the hydrodynamic interactions and the
particle collisions, can be obtained by assuming an exponential
decay exp(�t/s) for the appropriate correlation function: ~Ct

V (t)
and Ck

V(t) for ss and sl, respectively (see Fig. 9). The two-time
scale relaxation of the velocity uctuations can then be
approximated as

C
ð2Þ
V ðt;f;aÞ ¼ csðf;aÞe�t=ssðf;aÞ þ clðf;aÞe�t=slðf;aÞ

cs ¼ hdV$dVi
cl ¼ Uk

2

(46)

with Uk ¼ hV$ê3i and where we have explicitly shown the
dependence of the amplitudes c and decay times s on the
concentration and swimming mode of the particles. Fig. 9
shows excellent agreement between this two-time relaxation
process (with all four parameters obtained from the simulation
data) and the full correlation function CV(t) dened in eqn (39).
Furthermore, in what follows we show how the long-time decay
can be simplied and interpreted in terms of a binary collision
process between the swimmers.
4.3 Scaling

To conrm the interpretation we have given for the diffusive
motion of the squirmers, and the emergence of the two time-
scales, we perform a scaling analysis for the relevant parameters
(diffusion coefficients and collision time scales), as a function
of concentration f. Although a similar analysis has been pre-
sented in ref. 28 by Ishikawa and Pedley, they have not
considered the effective diffusion ~DT, whichmeans that only the
long-time behavior of the system, given by the particle colli-
sions, was analyzed (the hydrodynamic interactions which give
rise to the rapidly decaying velocity uctuations are completely
masked by the swimming motion). In a subsequent study,31 the
authors considered the diffusion of uid particles, as well as
inert colloidal particles, in a suspension of swimmers, and in
this case they were able to observe the emergence of a second
(shorter) time-scale. Our results, which are in agreement with
their scaling arguments, provide a complementary view of the
diffusive motion of these squirmer systems. The benet of the
analysis we propose lies in the fact that all relevant time and
length scales can be obtained just from the motion of the
squirmers, i.e., there is no need to consider the motion of the
uid or to introduce inert (non-swimming) particles. This
results in simpler simulations and will also be relevant when
trying to compare with experimental data.

4.3.1 Correlation times. First, lest us consider the long-
time dynamics of the system, which is determined by the
4932 | Soft Matter, 2013, 9, 4923–4936
particle–particle collisions of the swimmers. From the kinetic
theory of gases,54 we know that the mean free path l (or average
distance between collisions) should be proportional to the
inverse of the concentration of particles. In reduced units,
we have

l ¼ 2
ffiffiffi
2

p

3

�
sc

2f
	�1

(47)

with f the packing fraction, and sc the collision or cross-section
diameter, which is not necessarily equal to the actual physical
diameter of the particle. This difference is due to the self-
generated ow prole around each particle, and as such should
only depend on the swimming mode a, not on the concentra-
tion of particles. For the moment though, let us assume that we
are dealing with hard-spheres sc ¼ 2, the average time between
collisions is simply tHS

c ¼ lHS/Uc, which gives

tHS
c ¼

ffiffiffi
2

p

6
ðUcfÞ�1

(48)

where Uc is the average velocity of the particles. In thermal
systems, this velocity would be determined by the reservoir and
be independent of concentration, so that one obtains the well
known f�1 dependence for the collision time tHS

c f f�1.
Although the velocity of our squirmers is not concentration
independent, to rst order, we can safely assume that the
particles are all swimming at an average velocity which is near
the swimming velocity of an isolated squirmer, Uc ¼ 1. There-
fore, the collision time for our systems should show the same
concentration dependence predicted by kinetic theory, tcf f�1.
To obtain the collision times tc from the decay times s
computed from the simulations, we use the Enskog
approximation52,54

tc ¼ 2s/3 (49)

Our results, shown in Fig. 10, conrm the scaling predictions
for the long-time decay tlc ¼ 2sl/3. Of special interest is the
difference between tlc for the different squirming modes, with
the collision time decreasing with increasing a. This can be
explained by an increase in the effective size of the particle, as
the mean free path l is inversely proportional to the collision
diameter sc. We also show the mean collision time tHS

c for an
equivalent system of hard-spheres. The fact that the collision
times for the squirmers are signicantly larger than the corre-
sponding hard-spheres values is surprising, since it implies that
the squirmers have a cross-section diameter which is smaller
than the hard-sphere diameter of the particle (tc f sc

�2). The
reason for this lies in the collision dynamics of the squirmers.

The scaling of the fast time-scale ss (or tsc) is harder to
elucidate, since it shows only a very weak concentration
dependence. Given that ss is related to the velocity uctuations
caused by the short-range hydrodynamic interactions between
particles, it should be related to the time it takes for the ow
region around a particle to change: this is essentially the time
necessary for a particle to swim its diameter t x 2. Our results,
also shown in Fig. 10, agree with this rough estimate and also
indicate a power-law behavior with an exponent of x�1/6.
This journal is ª The Royal Society of Chemistry 2013



Fig. 10 (a) Scaling of the collision times, tlc and tsc, with concentration f. Also
shown is the collision time tHSc for an equivalent system of hard spheres, with a
(scaled) velocity of Uc ¼ 1, given by the kinetic theory of gases. (b) Scaling of the
translational ~DT and rotational DR diffusion coefficients with concentration. (c)
Scaling of the velocity fluctuations with concentration.

Paper Soft Matter
Although the decrease with concentration seems clear, it is very
difficult to accurately measure such small variations and we
have no suitable explanation for the value of this exponent
(given by a t to the data). These results are analogous to those
obtained by Ishikawa et al.31 for the time-scale of diffusing uid
particles in a suspension of squirmers.

4.3.2 Diffusion coefficients. For the scaling of the transla-
tional diffusion coefficients, a simple dimensional analysis yields

DT f Uc
2tc (50)
This journal is ª The Royal Society of Chemistry 2013
where Uc and tc are the characteristic velocity and time scales of
the collision process which gives rise to the diffusive motion.31

For the standard diffusion coefficient DT (eqn (36)), the reor-
ientation of the particles is caused by the particle–particle
collisions, thus tc ¼ tlc and DT f f�1 (assuming a constant
swimming velocity). This behavior has been analyzed in detail
in ref. 28. More relevant to our study is the scaling of the
effective diffusion coefficient ~DT (eqn (38)), in which the motion
due to the particle swimming has been removed. Our results,
shown in Fig. 10, indicate a linear dependence with concen-
tration ~DTf f. This is precisely the scaling behavior reported by
Ishikawa et al.31 for the diffusion of inert/uid particles, and the
same concentration dependence that has been observed
experimentally for the diffusion of tracer particles in swimming
suspensions (for both pushers and pullers).29,30 This is not
surprising, since we can consider that this diffusive motion
arises due to collisions between the particle (swimmer or not)
and the uid. By denition, it is clear that the velocity and time
scales cannot be the same swimming speed or collision time
used to dene DT. In this case, the characteristic velocity scale
will be set by the velocity uctuations dv around the average
swimming velocity, which can be directly measured by
computing the velocity components perpendicular to the
swimming axis of the particles Vt. For these uctuations, our
simulations indicate a square-root dependence with concen-
tration dvf

ffiffiffi
f

p
(see Fig. 10). The characteristic time-scale for

this process will be the time necessary for the uid ow
surrounding a given particle to show considerable variations,
and this can be estimated by the time it takes the particle to
travel its own diameter tc f 1. We thus recover the linear
dependence given by the simulations. The same scaling
behavior is obtained for the rotational diffusion coefficient
DR f f.

4.3.3 Collision diameters. So far, we have not considered
the effect of the squirming mode a on the diffusive properties of
the swimmers. While it is clear that increasing themagnitude of
a will give rise to stronger hydrodynamic interactions, and thus
increase the diffusion of the particles (as can be seen in Fig. 10),
it is not clear how this dependence can be quantied. We
propose that a, which denes the strength/range of the self-
generated uid-ow around a squirmer (eqn (3)), can be directly
related to the effective collision diameter of the swimmers.
From the expression of the mean free path, eqn (47), we obtain
the following for the collision radius rc ¼ sc/2

rc ¼
�
3

ffiffiffi
2

p
Uctcf

��1=2

(51)

Assuming tc ¼ f(a)f�1, with f(a) a function only of the
squirming mode a, and considering the swimming velocity to
be constant (Uc ¼ 1), we arrive at a concentration independent
collision radius

rc f [ f(a)]�1/2 (52)

As f (a) is a decreasing function of a, the effective collision
radius of the particle should increase with the magnitude of the
squirming mode. Our results for the collision radius, given by
Soft Matter, 2013, 9, 4923–4936 | 4933
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eqn (51), with Uc ¼ Uk ¼ hV$ê3i and tc ¼ 2/3sl obtained directly
from the simulations, are shown in Fig. 11. Allowing for the
large uncertainties in measuring the decay times at low
concentrations, we obtain very good agreement with the
previous scaling analysis: the radii show only a small variation
with f, and a clear distinction is observed as rar is increased.
We note however that the pushers seem to present a larger
collision radius than the pullers, something which is difficult to
explain with the simple collision model we have presented.

Also shown in Fig. 11 is the mean collision radius rc as a
function of a. Although more data is needed to accurately
specify the functional form of f (a), a simple linear dependence
predicts a value of rc (a ¼ 0) which is an order of magnitude
smaller than the hard-sphere radius of the particles rc x 0.1.
This is consistent with our simulations, from which we were
unable to obtain reliable estimates for sl, because the velocity
correlation functions exhibited no substantial decay over the
time scales we studied t x 102 to 103. However, we were able to
obtain estimates for the effective diffusion coefficients ~DT of
these neutral squirmers, which are an order of magnitude
smaller than the corresponding values for a ¼ +1. This means
that the difference in collision times, with respect to a corre-
sponding system of hard-spheres (see Fig. 10), will be even
Fig. 11 Effective collision radius rc of the squirmers as a function of (a)
concentration f and (b) swimming mode a. Results were obtained by using the
mean free path expression for a system of hard-spheres given by the kinetic
theory of gases eqn (51), with the velocity and collision time given by the simu-
lation data.
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larger for the neutral squirmers than it is for the swimmers with
non-zero a values. This is consistent with an interpretation in
terms of hard-spheres when analyzing the differences among
squirmers (larger a equivalent to larger collision radius rc), but
it can appear contradictory when comparing to actual hard-
sphere systems. Aer all, we could expect the systems for a ¼ 0,
in which the ow prole due to the squirming motion is most
localized (U(r) f r�3), to be closest to a system of hard-spheres.
Yet our results indicate that the collision radius of the neutral
squirmers is an order of magnitude smaller than the actual
radius of the particles. As we have already mentioned, this is
due to the difference in the collision dynamics of the particles,
which differ dramatically from that of hard-spheres.33,55

Although the exact collision process will depend not only on the
relative velocity of the particles, but also on their relative
orientations, the squirming motion results in deection angles
which are (on average) smaller than the corresponding hard-
sphere values. In essence, this means that the ow elds
generated by the particles allows them to swim past each other
with a relatively small change in their swimming direction
(again, as compared with an actual hard-sphere collision).

Finally, using eqn (51), the velocity correlation function for a
suspension of squirmers (eqn (46)) can be reduced to the
following functional form

CV ðt;f;aÞ ¼ cse
�t=ss þUk

2e�
ffiffi
2

p
scUkft (53)

where the long-time decay process is expressed only in terms of
the average swimming speed Uk(f, a) and the hard-sphere
collision diameter sc(a) of the squirmers. The former has a weak
linear dependence on concentration Uk ¼ 1 � A(a)f, while the
latter is concentration independent, as was shown in Fig. 11. The
scaling behavior for the short time process is still not under-
stood, but a t to our simulation results suggest a power law
behavior for the concentration dependence of the amplitude and
decay time of the velocity uctuations, with an exponent of 1/2
and�1/6, respectively; i.e.,csff and ssff�1/6. Amore detailed
analysis is required to rmly establish these scaling relation-
ships, as well as to determine the dependence on the swimming
parameter a. Work along these lines is in progress.

5 Conclusions

We have investigated the hydrodynamic interactions of
suspensions of squirmers using a modied version of the
smoothed prole method (SP) for particle dispersions. The SP
method allows one to fully resolve the hydrodynamic interac-
tions in many particle dispersions in an accurate and efficient
manner, and we have shown how it can be extended to systems
with slip boundary conditions, such that it is possible to
describe squirmers (active swimmers which move due to self-
generated surface tangential velocities). The validity of the
method was conrmed by comparing the simulation data with
exact results for the case of a single swimmer, for which we
recover the correct swimming speed and are able to accurately
reproduce the uid ow generated by the squirming motion,
and for two aligned swimmers at a xed distance, for which we
recover the expected hydrodynamic force. The advantage of the
This journal is ª The Royal Society of Chemistry 2013
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SP method for swimming particles, as opposed to Stokesian
Dynamics (which has been successfully, and extensively, used to
study these systems) is its applicability to particle dispersions in
complex uids. This is relevant in the case of swimming micro-
organisms, since the role of the nutrient and the possibility of
having a non-Newtonian host uid must be considered when
comparing with experiments.

In this paper we have analyzed the effect of the hydrody-
namic interactions on the motion of semi-dilute squirmer
suspensions, up to volume fractions of f ¼ 0.124, for various
swimming modes rar # 2. Although we have no yet included
thermal uctuations in our description, the swimming motion
of the particles gives rise, over sufficiently long time scales, to a
diffusive regime. In order to distinguish between the contri-
butions due to the hydrodynamic interactions, caused by the
squirming motion, and those due to the particle–particle colli-
sions, which are the two basic mechanisms responsible for the
diffusive motion, we have analyzed the particle dynamics in
terms of movement due to the inherent swimming of the
particles, and that due to the (hydrodynamic) interactions
among them. This is easily done by looking at the motion from
the particle's own frame of reference, i.e., decomposing the
motion parallel and perpendicular to the swimming axis. This
analysis has allowed us to demonstrate the appearance of two
distinct time scales within our system, one related to the time
between particle–particle collisions, the other to the uid–
particle interactions. This two-time scale nature of the particle
interactions in swimming suspensions can be clearly seen in
the two-time relaxation of the velocity correlation function. We
are thus able to dene an effective hydrodynamic diffusion
coefficient (corresponding to the short-time uid–particle
interactions), in which the self-motion of the particle has been
removed, which shows a linear scaling with concentration. In
contrast, the standard diffusion coefficient is inversely propor-
tional to the concentration of swimmers. This is in agreement
with simulation and experimental results on tracer diffusion in
swimming suspensions. Additionally, since the long-time
dynamics of the system is related to the particle–particle colli-
sions, we have used the well-known results from kinetic theory
to deduce an effective, concentration independent, collision
radius for our swimmers. Due to the complex collision
dynamics of these particles, this collision radius is actually
smaller than the hard-sphere radius of the particle, and
increases with increasing a.
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