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Saeed Jafari,1,2,* Ryoichi Yamamoto,3 and Mohamad Rahnama2

1Department of Petroleum engineering, Shahid Bahonar University of Kerman, Kerman, Iran
2Department of Mechanical Engineering, Shahid Bahonar University of Kerman, Kerman, Iran

3Department of Chemical Engineering, Kyoto University, Kyoto 615-8510, Japan
(Received 21 July 2010; revised manuscript received 8 December 2010; published 9 February 2011)

We developed a simulation scheme based on the coupling of the lattice-Boltzmann method with the smoothed-
profile method (SPM) to predict the dynamic behavior of colloidal dispersions. The SPM provides a coupling
scheme between continuum fluid dynamics and rigid-body dynamics through a smoothed profile of the fluid-
particle interface. In this approach, the flow is computed on fixed Eulerian grids which are also used for the
particles. Owing to the use of the same grids for simulation of fluid flow and particles, this method is highly
efficient. Furthermore, an external boundary is used to impose the no-slip boundary condition at the fluid-particle
interface. In addition, the operations in the present method are local; it can be easily programmed for parallel
machines. The methodology is validated by comparing with previously published data.
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I. INTRODUCTION

The flow of a dense suspension of colloidal particles is
encountered in many industrial processing units. Proper inves-
tigation of fluid-particle interactions is crucial for obtaining
good performance. Numerical simulations can aid in extending
our understanding to more complex colloidal suspensions.

In the last two decades, the lattice-Boltzmann method
(LBM) [1–4] has attracted much attention as a promising alter-
native for simulation of fluid flows with complex physics such
as multiphase flow and multicomponent flow [5–9], simulation
of particulate suspensions and colloid hydrodynamics [10–13],
and adding thermal fluctuations to fluids [13–16]. The LBM is
a method based on the solution of the Boltzmann equation on a
lattice with a discrete velocity field. It was shown that the basic
conservation equations of fluid flow (Navier-Stokes equations)
can be recovered from the Boltzmann equation [17]. Solution
of the Boltzmann equation provides a velocity distribution
function from which macroscopic fluid properties, such as
density, velocity, and pressure, can be obtained. Some advan-
tages of using the LBM in computing fluid flow problems as
compared to computational fluid dynamics (CFD) are the lack
of a convective term in the Boltzmann equation and the simple
pressure computation using an equation of state [2]. Moreover,
the streaming-and-collision computational procedure of the
LBM, which is a local operation in computation, makes it an
excellent candidate for parallel computing.

The LBM has been used to simulate particles suspended in
host fluids [15,16,18–20]. In some of these methods [15,16],
the bounce-back rule is employed to treat the no-slip boundary
condition on the fluid-particle interface, and the particle
interface is represented by the boundary nodes, which are a
set of midpoints of the links between two fixed grids. In these
approaches, the transfer of distribution functions is used to
account for the momentum transfer at the fluid-particle inter-
face. However, with these methods, the solid boundary will not
move continuously and smoothly in space; instead it will jump
from one midpoint to another, causing fluctuation. Although
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use of a finer lattice grid with more nodes at the boundary
or higher-order bounce back based on interpolations [21,22]
can reduce this fluctuation, these approaches will increase the
computational cost. Also, a continuous bounce-back method
was developed to incorporate solid-fluid boundary conditions
on length scales smaller than the grid spacing [23,24].

Another way to simulate fluid-particle interactions is to
use a combination of the immersed-boundary method (IBM)
and the LBM. In this kind of method [18–20], an immersed-
boundary body force is introduced to capture the particle
motion. In one such method, the immersed-boundary force
density is worked out via a linear spring relation due to
displacement between the boundary point and the computa-
tional point at the solid boundary [18]. A user-defined spring
parameter may have a significant effect on the computational
efficiency and accuracy. Another method computes the force
density at the particle boundary by setting the velocity on the
immersed Lagrangian boundary points equal to the velocity of
the particle [19]. In these methods a discrete δ function is used
to transform the force density from the boundary points to the
flow elements. Recently, two overlapping grid systems were
used [20], a regular Eulerian grid for the fluid domain and a
Lagrangian for the particle domain, and the no-slip boundary
condition at the solid interface was applied by adding a force
density to the fluid domain to force the difference between
the fluid and the solid velocity at the boundary nodes to
be zero; the counterforce acting on the solid particles was
used to update the position and velocity of particles based
on Newtonian dynamics equations. As in previous methods,
a discrete δ function was used to transform the force density
from the boundary points to the Eulerian points.

To avoid complicated interpolations and transformations
of the force density, a different direct forcing method is
introduced based on the smoothed-profile method (SPM) [25].
It uses fixed Eulerian grids for the host fluid. It represents
the particles by certain smooth body forces in the Navier-
Stokes equations instead of treating the particles as boundary
conditions to the fluid. The SPM solves a single set of
fluid dynamics equations in the entire domain including the
particle volumes, without any internal boundary conditions.
A smoothly spreading interface layer is used to represent the
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particle boundaries to give a transition from the rigid-body
motion to the fluid motion. By using this simple modification,
regular Cartesian coordinates can be employed for many-
particle systems with any arbitrary particle shape, rather than
boundary-fitted coordinates. The solid-fluid interface has a
finite volume supported by multiple grid points. Thus, a round
particle shape can be treated in a fixed Cartesian grid without
difficulty. We do not need to consider a lot of points on the
particle surface [19] or inside the particle [20]. Furthermore,
the computational demands for this method include sensitivity
to the number of grid points (volume of the total system);
however, it is insensitive to the number of particles [25]. The
common feature of using Cartesian mesh in the LBM and SPM
motivates us to combine them into one efficient method. The
numerical method, including the explanation of fluid-particle
interaction body force, is described in the following section.
Several examples are solved in Sec. III to show the accuracy
and the validation of the present model. Concluding remarks
are given in the last section.

II. NUMERICAL METHOD

A. Fluid flow simulation

The two-dimensional LBM is used for fluid flow simulation.
In this approach, the kinetic evolution of the lattice-Boltzmann
equation with the Bhatnagar-Gross-Krook (BGK) collision
approximation is expressed as

fα(x + cα�t,t + �t) = fα(x,t) − 1

τ

[
fα(x,t) − f eq

α (x,t)
]
,

(1)

where τ is the dimensionless relaxation time, and fα is the
distribution function along the α direction. Equation (1) is a
discrete finite-difference equation and is second-order accurate
with respect to space and time. For the D2Q9 lattice model, that
is, a model of a two-dimensional problem with nine velocities,
the discrete velocities are given by c0 = (0,0); cα = (±1, 0)c
and (0, ± 1)c for α = 1−4 and cα = (±1, ± 1)c for α = 5−8.
The streaming speed c is defined as �x/�t , where �x and
�t are the lattice spacing and time step, respectively.

The equilibrium distribution function f
eq
α for the incom-

pressible D2Q9 model is

f eq
α = ωαρ[1 + 3(cα · u)/c2 + 9(cα · u)2/2c4 − 3u2/2c2],

(2)

where ω0 = 4/9, ωα = 1/9 for i = 1,2,3,4 and ωα = 1/36 for
i = 5,6,7,8, and u is the local fluid velocity. The macroscopic
variables for the fluid mass density and fluid momentum are
defined by ρ = ∑8

α=1 fα and ρ u = ∑8
α=1 cαfα . By using

the Chapman-Enskog procedure, the incompressible Navier-
Stokes equations can be obtained from Eq. (1) with a shear
viscosityν = c2

s �t(τ − 1/2), where cs is the speed of sound
and c2

s = c2/3. More details regarding the derivation of
the Navier-Stokes equations from the LBM can be found
elsewhere [1,2].

B. Fluid-solid interaction

A method is developed here that is based on an exter-
nal boundary force [25] at the solid-fluid interface in the

FIG. 1. An example of a smoothed profile (solid line).

Navier-Stokes equation applied to the LBM to implement the
no-slip boundary condition for simulation of particulate flow.

In the smoothed-profile method, the surface of the colloid is
treated not as a sharp interface having no thickness, but rather
an interface is introduced having a width comparable to the
grid spacing. The colloid density profile is defined so as to
change smoothly within this finite-thickness interface.

In order to determine regions in which a colloidal particle
exists, the density field is introduced:

ϕ(x,t) =
NP∑
i=1

ϕi(x,t). (3)

Here, φi ∈ [0,1] is the density profile of the ith particle.
In the fluid regions, φi = 0, and in particle regions, φi = 1.
Between these values its value changes continuously in the
interface region of thickness ξ (Fig. 1). The functional form
of φ is defined arbitrarily; specific examples are contained in
Ref. [25]. In the present study, the following function is used:

ϕi(x) = s(R − |x − Ri |),

s(x) =
⎧⎨
⎩

0, x < −ξ/2,
1
2 sin

(
πx
ξ

+ 1
)
, |x| < ξ/2,

1, x > ξ/2,

(4)

where R is the radius of the ith particle and Ri is the center
position of the ith particle. The density field and velocity field
of the particles at t = tn are defined using Eq. (4):

ϕ(x,tn) =
NP∑
i=1

s(R − |x − Ri(tn)|), (5)

ϕ (x,tn)uP (x,tn) =
NP∑
i=1

s(R − |x − Ri(tn)|)

× [Vi(tn) + 
i(tn) × {x − Ri(tn)}] (6)

where φuP is the velocity field of the particles. In the SPM,
time evolution is computed for {Ri ,Vi ,�i} (i = 1, . . . , NP ),
which are the position, translational velocity, and angular
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FIG. 2. Streamlines of the flow around a circular cylinder at
Re = 20 and 40.

velocity of the ith particle, respectively, and NP is the number
of particles. Let the position, velocity, and angular velocity of
the colloidal particles {Ri ,Vi ,�i} (i = 1, . . . , NP ) be given at
the nth discretization time tn. From these variables, φ and φuP

are constructed.
The initial velocity in the fluid domain and the particles’

positions and velocities are known. The fluid nodes covered by
the particle must have the same velocity as the solid particle. A
body force is introduced over the particle inner domain to force
the fictitious fluid to satisfy the rigid-body motion constraint;
this force is zero outside the particle domain.

The fluid-solid interaction force φfP acting on the solid
particle nodes is given by
∫ tn+�t

tn

ϕ (x,tn)fP (x,tn)ds = ϕ(x,tn)[uP (x,tn) − u(x,tn)].

(7)

In the above equation, uP (x,tn) and u(x,tn) are the particle
velocity and fluid velocity at t = tn and x, respectively. The
resulting force acting on the fluid boundary nodes is given by

fH (x,tn) = −
∫ tn+�t

tn

ϕ (x,tn)fP (x,tn)ds. (8)

-UW/2

UW/2

FIG. 3. A neutrally buoyant cylinder in simple shear flow.

By adding an additional term to the collision function, the
fluid-solid interaction force from (8) is included in the lattice-
Boltzmann equation as

fα(x + cα�t,tn + �t) = fα(x,tn) − 1

τ

[
fα(x,tn) − f eq

α (x,tn)
]

+ ωα�t

c2
s

[fH (x,tn) · cα]. (9)

As the particle nodes coincide with the fluid nodes, the
particle-fluid interaction force is completely local and this
force is zero outside the particles’ domain.

The remaining steps are to update the velocity and angular
velocity of particles. The force FH

i and torque NH
i exerted by

the host fluid are obtained from the momentum conservation
law. From momentum exchange during the time interval �t ,
we obtain∫ tn+�t

tn

FH
i ds =

∫
∀P

ρϕi(x,tn) [u(x,tn) − uP (x,tn)] d∀P ,

(10)∫ tn+�t

tn

NH
i ds =

∫
∀P

[x − Ri(tn)] × ρϕi(x,tn)

× [u(x,tn) − uP (x,tn)]d∀P . (11)

Here, in order to compute FH
i and NH

i , the volume integral
over the particle volume, ∀P , is used, which is easier to
compute than the surface integral [26,27].

The velocity and angular velocity of the colloidal particles
are updated using this fluid drag and other forces:

Vi(tn + �t) = Vi(tn) + M−1
P

∫ tn+�t

tn

(
FH

i + Fc
i + Fext

i

)
ds,

(12)

�i(tn + �t) = �i(tn) + I−1
P

∫ tn+�t

tn

(
NH

i + Next
i

)
ds. (13)

In Eq. (12) Fc
i and F ext

i are the collisional force on the ith
particle and the external force on the ith particle, respectively,
and N ext

i in Eq. (13) is the external torque on the ith particle,
MP is the particle mass, and IP is the particle moment of
inertia tensor. The new particle positions are calculated by

Ri(tn + �t) = Ri(tn) +
∫ tn+�t

tn

Vids. (14)

The density field and velocity field of the particles for
the next time step are evaluated using the updated particle
positions and velocities.
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FIG. 4. Nondimensional y component of the position versus
nondimensional time.

Based on the above equations, the computational scheme
can be summarized as follows:

(1) At t = t0, the fluid velocity and particle velocity (trans-
lational and rotational), together with the particle position
(initial position when t = t0) are known.

(2) The velocity field of the particles is obtained using the
particle positions and velocities [Eqs. (5) and (6)].

(3) The fluid-solid interaction force fH is computed using
Eq. (8).

(4) The flow field is solved using the LBM [Eq. (9)].
(5) The interaction force is applied to all solid boundary

nodes; the hydrodynamic force and the hydrodynamic torque
acting on the particle are calculated according to Eqs. (10) and
(11).

(6) The particle velocities and positions are updated
[Eqs. (12), (13), and (14)]. The computations loop back to
step 2.

III. RESULTS

Several problems were investigated by the present method
to show its accuracy. They include flow over a circular
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0.3
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Feng et al. (2004)

FIG. 5. Nondimensional x component of the velocity versus
nondimensional time.
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FIG. 6. Nondimensional y component of the velocity versus
nondimensional time.

cylinder, a neutrally buoyant cylinder in simple shear flow,
two circular cylinders approaching each other in a channel,
and sedimentation of two circular cylinders in a viscous fluid.

A. Flow over a circular cylinder

The flow over a fixed cylinder is first investigated to
show the accuracy of the present method. Depending on the
Reynolds number, different behavior can occur. The Reynolds
number for this method is defined by

Re = U∞D

ν
,

where D, U∞, and ν are the diameter of the cylinder, the
free stream velocity, and the dynamic viscosity of the fluid,
respectively. The simulation was performed at Re = 20 and
40 and results were compared with previous numerical data.
Figure 2 shows the computed streamlines in a domain of L ×
W = 40D × 40D with a uniform mesh size of 800 × 800. The
cylinder center is at (2L/5,W/2) to decrease the effect of the
outer boundary. The drag coefficient [CD = Fx/(0.5ρDU 2

∞)]
and the length of the recirculation zone (LW = 2L/D) are
compared with previous published data [19] in Table I. The
present results agree well with published data. Here, in order
to compute the drag force Fx , the volume integral over the
particle volume is used [Eq. (10)].

B. A neutrally buoyant cylinder in simple shear flow

A schematic diagram of a neutrally buoyant cylinder in
shear flow is shown in Fig. 3. The diameter of the cylinder is D

TABLE I. Comparison of the results of the present study with the
results of the previous study of Niu et al. [19].

Reynolds number Method CD LW

20 Present study 2.112 1.914
Niu et al. [19] 2.144 1.89

40 Present study 1.598 4.81
Niu et al. [19] 1.589 4.52
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FIG. 7. Nondimensional y component of the velocity versus
nondimensional time for different interface thicknesses (a) ξ = 0,
(b) ξ = �x, (c) ξ = 2�x.

and it is positioned at rest halfway between the lower wall and
the center between two parallel plates. The gap between the
two parallel plates is 4D. The upper and lower walls are moving
at velocity UW/2 in opposite directions. The computational
domain is L × H = 100D × 4D, and D is selected to be
20. The fluid Reynolds number is Re = UWH/ν = 40. The
trajectory of the particle in the Y direction is compared with

-U/2U/2

d

R

FIG. 8. Two approaching circular cylinders in a channel.

previous numerical results (Fig. 4) and shows good agreement.
Figures 5 and 6 show the comparison of two components of the
particle velocity obtained in the current study and in previous
work [18] and perfect agreement is observed. In order to show
the effect of interface thickness on the results, the upward
velocity for different interface thicknesses is shown in Fig. 7.
It is observed that using the smoothed-profile method reduces
the small fluctuations.

C. Two circular cylinders in a channel

Results of the simulation of two circular cylinders in a
channel (Fig. 8) approaching each other are presented in
Fig. 9. The computational domain is 2L × L, and the radius
of the circular cylinder is 0.2875L. Figure 9 displays the
nondimensional normal force between two cylinders versus
the nondimensional distance between them, as they approach
each other with speeds ±U/2 = ±0.01, respectively. In this
figure h is defined by

h = d − 2R,

where d is the distance between the two cylinders, R is the
radius of the cylinder, and C is the drag force on either cylinder
when far from the other cylinder. Figure 9 shows that the ability
of this method to capture lubrication effects is enhanced by
using a finer mesh.

h/R

(F
x-

C
)/

(ρ
νU

)

10-2 10-1 100101

102

103

Present work (L=32)
Present work (L=64)
Present work (L=128)

FIG. 9. Nondimensional normal force between two cylinders,
approaching each other with speeds ±U/2 = ±0.01 versus their
nondimensional separation.
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D. Sedimentation of two circular cylinders in a viscous fluid

In order to show the capability of the current method, the
sedimentation of two circular particles in a Newtonian fluid
is investigated. We have considered a channel 2 cm wide (in
the x direction) and 8 cm high (in the y direction). The fluid
viscosity is 0.01 g/cm s and the density is 1 g/cm3. The particle
density is 1.01 g/cm3 and the radius is 0.1 cm. Gravity acts

in the negative y direction. The simulation is started at t = 0
s by dropping the two particles at the center of the channel at
heights of 7.2 and 6.8 cm.

To prevent the particles from overlapping with
each other or the wall, artificial forces are added.
In the current study the Lennard-Jones potential
{EPP = 0.4ε[(2a/Ri,j )12 − (2a/Ri,j )6]} is used, where
i and j index the particles. We have

FP−P
i =

{
0 Ri,j > 2a + ζ,

2.4ε
∑NP

j=1,j �=i [2(2a/Ri,j )14 − (2a/Ri,j )8] Ri−Rj

(2a)2 , Ri,j � 2a + ζ,
(15)

and

FP−W
i =

{
0 Ri,j > a + ζ,

2.4ε
∑jwmax

jw=1 [2(a/Ri,jw)14 − (a/Ri,jw)8] Ri−Rjw

(a)2 Ri,j � a + ζ,
(16)

where ε = a2,Ri,j = |Ri − Rj |, and Ri,jw = |Ri − Rjw|. Rjw

represents the wall position and ζ is set to one lattice unit in
the present work.

It is known that two particles dropped close to each other
in a Newtonian fluid undergo drafting, kissing, and tumbling
[18,28]. The leading particle creates a wake of low pressure, in
which the trailing particle is caught, thus making it fall faster
than the leading one; this stage is called drafting. Then the
trailing particle with increased speed induces a kissing contact
with the leading one in which the two particles form a long
body with the center line along the stream. This state, which is
called kissing, is unstable, and will be broken down eventually;
after that the particles tumble.

Figures 10 and 11 show the plots of instantaneous vertical
and horizontal positions of the two particles. The previous
numerical results [18] are also included and their comparison
confirms the accuracy of the present work. These figures
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Particle 2 (Feng et al. (2004))

FIG. 10. Plot of instantaneous vertical positions of the two
particles.
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FIG. 11. Plot of instantaneous horizontal positions of the two
particles.

illustrate that the results are in good agreement with the kissing
of particles. It is known that the tumbling phenomenon is a
realization of instability and different modes of tumbling have
been reported in previous work [18,28].

IV. SUMMARY

The LB-SP method, which combines the smoothed-profile
and the lattice-Boltzmann methods, has been proposed for
simulating particle suspensions. In this method, the same
computational grid is used for flow domain and particles. The
no-slip boundary condition is imposed by using an external
boundary force in computational nodes inside the particles.
The main advantage of the present method is preservation
of the merits of the LBM in simulating fluid flow. The
LB-SP method has been validated by simulating the flow
over a circular cylinder, a neutrally buoyant cylinder in simple
shear flow, two circular cylinders approaching each other in
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a channel, and sedimentation of two circular cylinders in a
viscous fluid. All of the results confirm the accuracy and
efficiency of the present method and its ability to simulate
fluid-particle interaction problems.
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