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Implementation of Lees–Edwards periodic boundary conditions for direct
numerical simulations of particle dispersions under shear flow
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A general methodology is presented to perform direct numerical simulations of particle dispersions
in a shear flow with Lees–Edwards periodic boundary conditions. The Navier–Stokes equation is
solved in oblique coordinates to resolve the incompatibility of the fluid motions with the sheared
geometry, and the force coupling between colloidal particles and the host fluid is imposed by using a
smoothed profile method. The validity of the method is carefully examined by comparing the present
numerical results with experimental viscosity data for particle dispersions in a wide range of volume
fractions and shear rates including nonlinear shear-thinning regimes. © 2011 American Institute of
Physics. [doi:10.1063/1.3537974]

I. INTRODUCTION

Understanding the rheological properties of particle dis-
persions has been an important problem in many fields of
science and engineering. When a dispersion is subjected to
shear flow, the flow properties of the dispersion show a va-
riety of non-Newtonian behaviors such as shear thinning and
shear thickening. These non-Newtonian behaviors are associ-
ated with the changing microstructures of the dispersion, and
several different physical mechanisms for these peculiar be-
haviors have been proposed.

In recent years, several numerical methods have been de-
veloped to accurately simulate particle dispersions, and they
are all based on a similar approach, which involves resolving
the fluid motion simultaneously with the particle motion. We
refer to this approach as direct numerical simulation (DNS).
Recently, we have developed a numerical method, which we
call the smoothed profile method (SPM), for the DNS of par-
ticulate flows.1–4 In the SPM, the Navier–Stokes equation for
the fluid motion is discretized on a fixed grid, and the New-
ton’s and Euler’s equations for the particle motion are solved
simultaneously with the fluid motion. One simple technique
to impose shear flow with the DNS approach that maintains
conventional cubic periodic boundary conditions is to apply
a spatially periodic external force to generate a periodic flow
profile. We have successfully used a zigzag flow profile to
impose both steady and oscillatory shear flows in the DNS of
spherical particle dispersions.3, 4

When a zero-wavevector shear flow is required, the usual
cubic periodic boundary conditions must be modified to
be compatible with a time-dependent shear deformation of
the simulation cell. Such a modification was proposed by
Lees and Edwards5 and is commonly used in various simu-
lation studies. The Lees–Edwards boundary conditions can
be very easily implemented for particle-based simulations
such as molecular dynamics simulations. However, care must

a)Electronic mail: hidekb@cheme.kyoto-u.ac.jp.
b)Electronic mail: ryoichi@cheme.kyoto-u.ac.jp.

be taken to implement these conditions in continuum grid-
based simulations such as computational fluid dynamics or
time-dependent Ginzburg–Landau equations. The most useful
implementation of the Lees–Edwards periodic boundary con-
ditions for grid-based simulations is to solve the dynamic
equations in deformed (oblique) coordinates.6–8 Onuki pro-
posed a general methodology to examine the phase transition
dynamics and rheology in the presence of shear flow,6 and it
has been successfully used in several simulation studies and
particularly for polymeric fluids in shear flow.9–12

The aim of this short paper is to propose a method to
implement the Lees–Edwards periodic boundary conditions
to simulate dispersions of solid particles in host fluids by the
combinatory use of the SPM and the oblique coordinates.

II. METHOD

In the SPM, the boundary between the solid particles and
the solvent is replaced with a continuous interface by assum-
ing a smoothed profile. This simple modification enables us
to calculate hydrodynamic interactions both efficiently and
accurately without neglecting many-body interactions. The
equation governing the dynamics of particle dispersion is a
modified Navier–Stokes equation:

ρ

{
∂u
∂t

+ (u · ∇)u
}

= ∇ · σ + ρφ f p − Kρ(ux − γ̇ y)ex (1)

with the condition of incompressibility ∇ · u = 0, where ρ is
the solvent density,

σ = −p I + ηf
{∇u + (∇u)T

}
(2)

is the Newtonian stress tensor with a solvent viscosity of
ηf, and u(r, t) and p(r, t) are the velocity and pressure
of the dispersion, respectively. A smoothed profile function
0 ≤ φ(r, t) ≤ 1 distinguishes between the fluid and particle
domains as well as yields φ = 1 in the particle domain and
φ = 0 in the fluid domain. These domains are separated by

0021-9606/2011/134(6)/064110/7/$30.00 © 2011 American Institute of Physics134, 064110-1

Downloaded 12 Feb 2011 to 130.54.110.31. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.3537974
http://dx.doi.org/10.1063/1.3537974
http://dx.doi.org/10.1063/1.3537974
mailto: hidekb@cheme.kyoto-u.ac.jp
mailto: ryoichi@cheme.kyoto-u.ac.jp


064110-2 H. Kobayashi and R. Yamamoto J. Chem. Phys. 134, 064110 (2011)

thin interstitial regions with thicknesses characterized by ξ .
The dispersion density ρ is represented as

ρ = (1 − φ)ρf + φρp, (3)

where ρf and ρp are the solvent and particle densities, respec-
tively. Only neutral buoyancy dispersions with ρ = ρf = ρp

are simulated in the present study. The body force φ f p is in-
troduced so that the total velocity field u of the dispersion
satisfies u(r) = (1 − φ)uf(r) + φup(r), where uf is the fluid
velocity and up represents the rigid motions of the particles.
The incompressible condition ∇ · u thus ensures ∇φ · (up

− uf) because both uf and up satisfy incompressible condi-
tions. The gradient of φ is proportional to the surface-normal
vector and has a support on the interfacial domains. There-
fore, the body force φ f p introduced to satisfy the rigidity of
the particles ensures the appropriate impermeability bound-
ary conditions at the fluid–particle interface, while the nonslip
boundary conditions are imposed automatically by the vis-
cous stress term in the Navier–Stokes equation. More detailed
explanations and the mathematical expressions for φ and φ f p

were also detailed in our previous papers.1, 2

The last term in Eq. (1) represents the external force
needed to maintain linear shear flow:

ux = γ̇ y, (4)

where γ̇ is the shear rate, and K is a constant that determines
the amplitude of the external force. Here we impose only the
zero-wavevector shear flow so that the averaged fluid velocity
becomes compatible with Eq. (4).

The motion of the i th particle in a dispersion is governed
by Newton’s and Euler’s equations of motion:

Mi
d

dt
v i = f H

i + f P
i + gV

i ,
d

dt
r i = v i , (5)

I i · d

dt
ωi = nH

i + gω
i , (6)

where r i , v i , and ωi are the position, translational veloc-
ity, and rotational velocity of the colloidal particles, respec-
tively. Mi and I i are the mass and the moment of inertia,
and f H

i and nH
i are the hydrodynamic force and torque ex-

erted by the solvent on the colloidal particles, respectively.1, 2

gV
i and gω

i are the random force and torque, respectively,
due to thermal fluctuations. The temperature of the system
is defined such that the long-term diffusive motion of the
colloidal particles reproduces the Stokes–Einstein rule.3, 4 f P

i
represents the potential force due to direct inter-particle in-
teractions such as through the Coulombic and Lennard–Jones
potentials.

Equations (1), (5), and (6) are solved simultaneously in
the SPM. However, this task is not easy with an ordinary pe-
riodic boundary condition because Eq. (1) depends explicitly
on y, which leads to a violation of the translational invariance.
This problem can be eliminated by using oblique coordinates.
Figure 1 represents a schematic illustration of the present co-
ordinate transform. At a time t = t0, a spherical solid particle
is located in a solvent in Fig. 1(a) where the solvent is dis-
cretized into square grids in an ordinary rectangular coordi-
nate system. In Fig. 1(b), the grids are deformed due to the

FIG. 1. A schematic illustration of the present coordinate transformation. In
(a), a spherical solid particle is in a solvent, which is discretized into grids in
an ordinary rectangular coordinate system, at a time t = t0. Since the shear
flow is applied for t > t0, the solvent (grids) is convected by the flow while
the shape of the solid particle is unchanged. Such a situation is depicted in
the original (experimental) frame in (b) and also in a transformed (oblique)
frame in (c). The transformation between (b) and (c) is defined by Eq. (7).

shear flow that is applied for t > t0 while the shape of the
solid particle is unchanged. The same situation is depicted in
a transformed (oblique) frame in Fig. 1(c) where the grid has
not moved (i.e., it remains rectangular), but the shape of the
solid particle changes over time due to the shear flow.

To formulate the oblique coordinate transformation based
on tensor analysis, we began by redefining the covariant basis
Êi and contravariant basis Êi in oblique coordinates rather
than using the expressions shown in the literature.6–8 Figure 2

FIG. 2. The definition of a basis vector.
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provides a definition of the basis vectors. Using a rectangular
unit vector, Êi and Êi are expressed as

Ê1 = ex Ê1 = ex − γ̇ tey

Ê2 = γ̇ tex + ey Ê2 = ey

Ê3 = ez Ê3 = ez,

(7)

where eα is the unit vector in the α(= x, y, z) direction in the
original rectangular coordinate system. We can obtain con-
travariant (covariant) vector components Ai (Ai ) using A · Êi

(A · Êi ). The positional vector r ≡ xex + yey + zez is trans-
formed from the rectangular coordinate expression r to the
oblique coordinate expression r̂ as follows:

r ≡ xex + yey + zez

= (r · Ê1)Ê1 + (r · Ê2)Ê2 + (r · Ê3)Ê3

= x̂1 Ê1 + x̂2 Ê2 + x̂3 Ê3 ≡ r̂, (8)

where the contravariant components (x̂1, x̂2, x̂3) are ex-
pressed as

x̂1 = x − γ̇ t y
x̂2 = y
x̂3 = z,

(9)

and the time in oblique coordinates is expressed as t̂ = t .
Each contravariant component is transformed to a covari-
ant component by using the metric tensors Gi j = Êi · Ê j and
Gi j = Êi · Ê j . Then, the transformation can be expressed as

Ai = Gi j A j , (10)

Ai = Gi j A j . (11)

The physical quantities in Eq. (1) are transformed as in-
dicated in the following:

p̂(r̂, t̂) = p(r, t), (12)

φ̂(r̂, t̂) = φ(r, t), (13)

û(r̂, t̂) = u(r, t) − γ̇ yex , (14)

φ̂ f̂ p(r̂, t̂) = φ f p(r, t). (15)

In the oblique coordinate system, û satisfies the standard peri-
odic boundary conditions while u satisfies the Lees–Edwards
periodic boundary conditions in the rectangular coordinate
system. The contravariant components (û1, û2, û3) of û are
expressed as

û1 = ux − γ̇ tuy − γ̇ y
û2 = uy

û3 = uz,

(16)

where (ux , uy, uz) are the rectangular components of u. The
contravariant components of φ̂ f̂ p are (φ̂ f̂ 1

p , φ̂ f̂ 2
p , φ̂ f̂ 3

p ) and
can be expressed as

φ̂ f̂ 1
p = φ f x

p − γ̇ tφ f y
p

φ̂ f̂ 2
p = φ f y

p

φ̂ f̂ 3
p = φ f z

p ,

(17)

where ( f x
p , f y

p , f z
p ) are the rectangular components of f p.

The differential operators in oblique coordinates are de-
fined by

∇̂ = Ê1 ∂

∂ x̂1
+ Ê2 ∂

∂ x̂2
+ Ê3 ∂

∂ x̂3
, (18)

∂

∂ t̂
= ∂

∂t
+ γ̇ y

∂

∂x
. (19)

Therefore, the Laplacian operator in oblique coordinates is
expressed as

�̂ =
(

∂

∂ x̂1

)2

+
(

∂

∂ x̂2
− γ̇ t

∂

∂ x̂1

)2

+
(

∂

∂ x̂3

)2

. (20)

Using these formulas, Eqs. (1) and (2) are rewritten in
oblique coordinates as

ρ

{
∂ û
∂ t̂

+ (û · ∇̂)û
}

= ∇̂ · σ̂ + ρφ̂ f̂ p − ργ̇ û2 Ê1 − Kρ(û1 + γ û2)Ê1 (21)

and

σ̂ i j (r̂, t̂) = −Gi j p̂(r̂, t̂) + ηf

{
Gin ∂ û j

∂ x̂ n
+ G jm ∂ ûi

∂ x̂m

}
, (22)

with the incompressibility condition ∇̂ · û = 0. Because
Eq. (21) and û satisfy the periodic boundary conditions in
all directions, a fast Fourier transformation (FFT) can be
safely used to solve the Poisson equation, which is needed
to determine p̂ with the incompressibility condition. In
Appendix A, detailed explanations are given on how to solve
Eq. (21) with the incompressibility condition in the oblique
coordinate system using the spectral (Fourier) method.

When γ ≡ γ̇ t = 1, the positions r̂ = (x̂1, x̂2, x̂3) on an
oblique grid with γ can be mapped onto the identical posi-
tions r = (x, y, z) on the original rectangular grid with γ = 0
using the operation x = x̂1 + x̂2, y = x̂2, z = x̂3. The shear
strain γ is then reset to 0.6 Repeating this process allows us
to perform stable numerical calculations over a long period
with keeping 0 ≤ γ ≤ 1. The above coordinate transforma-
tion based on the tensor analysis leads to the same expression
for the Laplacian �̂ as that of a previous study.6 However,
a difference arises between the differential operators ∇̂ for
which our formal transformation derives a much simpler ex-
pression as shown in Eq. (18).

We calculate the dynamics of solid particle dispersions in
shear flow by following these steps:

(i) The fluid velocity field in the oblique coordinate sys-
tem at a new time t = nh is calculated by integrating
Eq. (21) over time with φ̂ f̂ p = 0 as

û∗ = ûn−1 +
∫ tn−1+h

tn−1

[
∇̂ ·

(
1

ρ
σ̂ − ûû

)

−{K (û1 + γ û2) + 2γ̇ û2}Ê1

]
ds (23)

Downloaded 12 Feb 2011 to 130.54.110.31. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



064110-4 H. Kobayashi and R. Yamamoto J. Chem. Phys. 134, 064110 (2011)

while satisfying the incompressibility condition ∇̂ ·
û∗ = 0. Here the superscript n denotes the time step and
h is the time increment. In Appendix A, detailed expla-
nations are given also on how to solve Eq. (23) using
the spectral method.

(ii) The velocity field û∗ is transformed into rectangular co-
ordinates u∗ using the inverse transformation expressed
as

ux = û1 + γ̇ t û2 + γ̇ x̂2

uy = û2

uz = û3.

(24)

(iii) The motions of colloidal particles are only calculated in
rectangular coordinates. The position of each colloidal
particle is calculated by

rn
i = rn−1

i +
∫ tn−1+h

tn−1

vn−1
i ds. (25)

(iv) Using the momentum conservation between colloidal
particles and the solvent, the hydrodynamic force and
torque acting on each colloidal particle are computed
with volume integrals within the particle domain as

f H
i = ρ

h

∫
d r

[
φn

i

(
u∗ − un−1

p

)]
(26)

and

nH
i = ρ

h

∫
d r

[
(r − r i ) × φn

i

(
u∗ − un−1

p

)]
, (27)

where φun−1
p (r) = ∑

i φn
i (r)(vn−1

i + ωn−1
i × (r − r i ))

is the correct velocity field within the particle do-
main in which φ � 1. The space integrals in Eqs.
(26) and (27) are carried out by summations over grid
points in actual computations; however, there occur grid
mismatch between u∗ which is supported on oblique
grid points r̂ î, ĵ,k̂ and other variables (φn

i and φun−1
p )

which are supported on rectangular grid points r i, j,k .
We determine values of u∗ on rectangular grid points
r i, j,k by linear interpolation as described in detail in
Appendix B. The translational velocity and rotational
velocity of each colloidal particle are then calculated as

vn
i = vn−1

i + 1

Mi

∫ tn−1+h

tn−1

(
f H

i + f P
i + gH

i

)
ds (28)

and

ωn
i = ωn−1

i + I−1
i

∫ tn−1+h

tn−1

(
nH

i + gω
i

)
ds. (29)

(v) To ensure the rigidity of the particles and the appropri-
ate nonslip boundary conditions at the fluid/particle in-
terface, the body force φ f p is calculated as

φ f p = φ
(
un

p − u∗)
h

− 1

ρ
∇ pp. (30)

The correcting pressure pp is determined to make the
resultant total velocity incompressible. This leads to the

Poisson equation of pp:

�pp = ρ
∇ · φ

(
un

p − u∗)
h

. (31)

We then transform φ f p into oblique coordinates φ̂ f̂ p

using Eqs. (15) and (17).
(vi) Finally, we obtain the correct fluid velocity field as

ûn = û∗ + φ̂ f̂ ph. (32)

Repetition of steps (i) through (vi) provides a complete
procedure to perform the DNS of colloidal dispersions
under shear flow.

We can calculate the stress tensor of the dispersion 〈s〉
and the dispersion viscosity η = 〈sxy〉/γ̇ in the following
manner where 〈· · ·〉 denotes averaging over space and time.
The equation governing the dispersion is formally written as

D

Dt
(ρu) = ∇ · σ dis − Kρ(ux − γ̇ y)ex . (33)

By comparing Eq. (1) with Eq. (33), we get the formula

∇ · σ dis = ∇ · σ + ρφ f p. (34)

The full stress tensor s of the flowing dispersion is then de-
fined by introducing a convective momentum–flux tensor ex-
plicitly as

s = σ dis − ρuu. (35)

The definitions of σ dis and s are identical to the definitions in
our previous paper.4 Now, we can evaluate the average stress
tensor of the dispersion 〈s〉 directly from Eqs. (34), (35), and
δσ = s − σ as

〈s〉 = 〈σ 〉 + 1

V

〈∫
d rδσ

〉
t

= 〈σ 〉 + 1

V

〈∫
d r[(∇ · (δσ r))T − r∇ · δσ ]

〉
t

= 〈σ 〉 − 1

V

〈∫
d r r∇ · δσ

〉
t

= 〈σ 〉− 1

V

〈∫
d r rρφ f p

〉
t

+ 1

V

〈∫
d r ru · ∇(ρu)

〉
t

= 〈σ 〉 − 1

V

〈∫
d r rρφ f p

〉
t

(36)

with the volume V = Lx L y Lz , where Li is the system size
in i-direction. 〈· · ·〉t denotes time averaging over steady
state. In the derivation of the second formula, we used a
second rank identity. If we substitute Eq. (34) into the third
formula, then we obtain the fourth formula. The fifth formula
can be obtained by assuming that the system is in a steady
state in which 〈d/dt (ρu)〉t = 〈∂/∂t (ρu) + u · ∇(ρu)〉t

= 0 and 〈∂/∂t (ρu)〉t = 0.

III. RESULTS

Using the method described above, we calculated the
high- and low-shear limiting viscosities of colloidal dis-
persions for various volume fractions of particles �. The
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FIG. 3. The behavior of the viscosity η as a function of the volume frac-
tion �. The open symbols represent the high-shear limiting viscosity, and
the closed symbols represent the low-shear limiting viscosity. The open and
closed circles correspond to our simulation data, whereas the triangles cor-
respond to experimental results (Ref. 14). The solid line is Brady’s theoret-
ical prediction (Ref. 15), and the dotted line is a fitting curve obtained from
previous experimental (Ref. 14) and simulation (Ref. 16) data. The inset in-
dicates a comparison of our present simulation data with Einstein’s viscosity
law (dashed-line) in the small volume fraction regime � < 0.01 where the
viscosity exhibits simple Newtonian behavior.

particles interact via a truncated Mie (m, n) potential with
m = 36 and n = 18:13

U (r ) =
⎧⎨
⎩

4ε

{(σ

r

)36
−

(σ

r

)18
}

+ ε (r < 21/18σ ),

0 (r > 21/18σ ),
(37)

where r is the distance between the centers of a pair of parti-
cles. The parameter εcharacterizes the strength of the interac-
tions, and σ represents the diameter of the colloidal particles.
The lattice spacing δx is taken to be the unit of length. The
unit of time is given by ρfδx2/η, where η = 1 and ρf = ρp

= 1. The system size is Lx × L y × Lz = 64 × 64 × 64.
Other parameters are set as follows: σ = 8, ξ = 2, ε = 1,
η = 1, Mi = πσ 3/6, and h = 0.067. The temperature is
kBT = 7. The range of shear rate is 1.0 × 10−4 < γ̇ < 0.1.

The inset of Fig. 3 shows the dependence of the New-
tonian viscosity on the volume fraction � when � � 1. The
present simulation data show very good agreement with Ein-
stein’s viscosity law. Figure 3 shows the dependence of the
low-shear limiting viscosity (closed symbols) and the high-
shear limiting viscosity (open symbols) on the volume frac-
tion. Our simulation data for both high- and low-shear lim-
iting viscosities show good agreement with the experimen-
tal results of van der Werff et al.14 Previously, Brady the-
oretically predicted the behavior of the low-shear limiting
viscosity.15 Our simulation data show good agreement with
Brady’s prediction over a wide range of volume fractions
0 < � < 0.55. Ladd analyzed the behavior of the high-shear
limiting viscosity using Stokesian dynamics.16 Our simula-
tion data agree well with Ladd’s simulation data and also with
the theoretical results of Beenakker.17

• ×× • •

FIG. 4. A schematic illustration of the lattice discordance between the
oblique and rectangular coordinates. r i, j,k is the location vector in a rect-
angular coordinate system. r̂ î−1, ĵ,k̂ and r̂ î, ĵ,k̂ are the location vectors in the
oblique coordinate system.

Finally, we add some comments on the differences
between the present method using Lees–Edwards boundary
condition and the previously proposed method using zigzag
velocity profile.18 We simulated a single spherical particle in
shear flow using the two methods without thermal fluctuation.
The volume fraction is 0.001. Figure 5 shows the ratio of
angular velocity ω of a spherical particle to the applied
shear rate γ̇ as a function of γ̇ . Although the data using the
present method tend to be slightly smaller than the data using
the zigzag flow, deviations of both data from the analytical
value ω/γ̇ = 0.5 remain small within numerical errors of
the methods. Figure 6 shows the intrinsic viscosity [η] of the
dilute dispersion as a function of shear rate γ̇ . The simulation
data using the present method almost perfectly follow onto
the Einstein’s prediction [η] = 2.5, while the data using
zigzag flow slightly overestimate [η] because of unphysical
kinks of the zigzag flow profile. This problem is not very
serious when the shape of dispersed particles is spherical
and the size of the particle is much smaller than the distance
between two kinks. Serious problems, however, occur if

FIG. 5. The behavior of the ratio of angular velocity ω to the shear rate γ̇

as a function of γ̇ . Open circles indicate the results of the previous method.
Closed circles indicate the results of the present method. The solid line cor-
responds to the analytical solution.
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FIG. 6. The behavior of the intrinsic viscosity as a function of shear rate γ̇ .
Open circles indicate the results of the previous method. Closed circles indi-
cate the results of the present method. The solid line corresponds to Einstein’s
viscosity law.

this method is applied to nondilute dispersions of chains or
rods, for example. The present method using Lees–Edwards
boundary condition is free from this problem.

IV. CONCLUSION

We presented a generic methodology for performing
DNS of particle dispersions in a shear flow using oblique
coordinates and periodic boundary conditions. The validity
of the method was confirmed by comparing the present nu-
merical results with experimental viscosity data for parti-
cle dispersions over a wide range of the parameters � and
γ̇ that include nonlinear shear-thinning regimes. An impor-
tant advantage of the DNS approach over other approaches
such as Stokesian dynamics is its applicability to particle
dispersions in complex fluids. In fact, electrophoresis of
charged colloids19 and particle dispersions in nematic liq-
uid crystals20 have already been calculated using SPM. Our
methodology can also be applied to simulate particle dis-
persions in viscoelastic fluids simply by replacing the New-
tonian constitutive equation to more complex ones such as
Maxwell model.
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APPENDIX A: FOURIER SPECTRAL METHOD
WITH OBLIQUE COORDINATE

In this section, we describe how to solve Eq. (21) with
the incompressibility condition in an oblique coordinate sys-
tem using Fourier spectral methods. The Fourier and inverse
Fourier transforms are defined as

A(k̂) =
∫

A(r̂) exp(−i k̂ · r̂)d r̂, (A1)

A(r̂) = 1

(2π )3

∫
A(k̂) exp(i k̂ · r̂)d k̂, (A2)

where k̂ is the wavevector of the oblique coordinate system.
In k̂ space, we can express the spatial covariant derivative as

∂ A(r̂)

∂ x̂α
→ ikα A(k̂), (A3)

where kα is a covariant component of k̂.
Using these relations, we modify Eq. (23) from r̂ space

to k̂ space. This equation is solved in k̂ space. First, by substi-
tuting Eq. (22) into Eq. (23), we obtain the explicit equation
represented by

û∗(r̂) = û(r̂) +
∫ tn−1+h

tn−1

[
−(û(r̂) · ∇̂)û(r̂) − ∇̂ p̂(r̂)

ρ
+ ν�̂û(r̂)

−{K (û1(r̂) + γ û2(r̂)) + 2γ̇ û2(r̂)}Ê1

]
ds, (A4)

where ν = ηf/ρ is the kinetic viscosity. Using a Fourier trans-
form, the form of Eq. (A4) in k̂ space is written as

û∗(k̂) = û(k̂) +
∫ tn−1+h

tn−1

[−F(k̂) − ν k̂
2
û(k̂)

−{K (û1(k̂) + γ û2(k̂)) + 2γ̇ û2(k̂)}Ê1]⊥ds, (A5)

where

F(k̂) =
∫

(û(r̂) · ∇̂)û(r̂) exp(−i k̂ · r̂)d r̂. (A6)

The bracket [A(k̂)]⊥(≡ A(k̂) · (I − (k̂k̂/k̂
2
))) denotes tak-

ing the orthogonal part to k̂ and this operation corresponds
to imposing the incompressibility condition ∇̂ · û(r̂) = 0 [or
equivalently k̂ · û(k̂) = 0]. Because p̂(r̂) is automatically de-
termined by imposing the condition of incompressibility, we
can safely neglect this term.

Using the method described above, we calculate û∗(r̂)
from û(r̂) as shown in Eq. (23).

APPENDIX B: MAPPING OF ON-LATTICE VARIABLES
BETWEEN OBLIQUE AND RECTANGULAR
COORDINATES

An arbitrary position vector in the oblique coordinate
system is defined as

r̂ î, ĵ,k̂ = (î Ê1 + ĵ Ê2 + k̂ Ê3)δx (B1)

with arbitrary integer numbers î, ĵ, k̂, while a position vector
in the rectangular coordinate system is defined as

r i, j,k = (iex + jex + kex )δx (B2)

with integer numbers i, j, k, where δx represents the lattice
spacing. In general, the two position vectors r̂ î, ĵ,k̂ and r i, j,k

are not compatible with each other. To transform from r̂ î, ĵ,k̂

to r i, j,k using Eq. (9), i must equal î − γ ĵ . However, γ ĵ is
not always an integer since γ is defined between 0 and 1. We
thus perform interpolation of the variables to overcome this
problem.

Figure 4 shows a lattice discordance between the rect-
angular and oblique coordinate systems. r i, j,k is the location
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vector in rectangular coordinates, and r̂ î−1, ĵ,k̂ and r̂ î, ĵ,k̂
are the location vectors in oblique coordinates. Using liner
interpolation, we estimate the velocity field in rectangular
coordinates u(r i, j,k) from the velocity field in oblique coor-
dinates u(r̂ î−1, ĵ,k̂) and u(r̂ î, ĵ,k̂). From the liner interpolation,
u(r i, j,k) along the straight line is given by the equation

u(r i, j,k) = |r̂ î, ĵ,k̂ − r i, j,k |
|r̂ î, ĵ,k̂ − r̂ î−1, ĵ,k̂ |

u(r̂ î−1, ĵ ,k̂)

+ |r̂ î−1, ĵ ,k̂ − r i, j,k |
|r̂ î, ĵ,k̂ − r̂ î−1, ĵ ,k̂ |

u(r̂ î, ĵ,k̂). (B3)

When using liner interpolation, artificial diffusion may
arise. To check the reliability of the present method, we
calculate the angular velocity ω and intrinsic viscosity [η]
= lim�→0(η − ηf)/� for a dilute dispersion of spherical par-
ticle for which analytical solutions are available. As already
shown in Figs. 5 and 6, the present simulation data agree very
well with analytical solutions indicating that the effects of ar-
tificial numerical diffusion are not serious.
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