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Direct Numerical Simulations of Electrophoresis of Charged Colloids
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We propose a numerical method to simulate electrohydrodynamic phenomena in charged colloidal
dispersions. This method enables us to compute the time evolutions of colloidal particles, ions, and host
fluids simultaneously by solving Newton, advection-diffusion, and Navier-Stokes equations so that the
electrohydrodynamic couplings can be fully taken into account. The electrophoretic mobilities of charged
spherical particles are calculated in several situations. The comparisons with approximation theories show
quantitative agreements for dilute dispersions without any empirical parameters; however, our simulation
predicts notable deviations in the case of dense dispersions.
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Electrohydrodynamic phenomena are of great impor-
tance in physical, chemical, and biological science, and
also in several engineering fields [1]. In the case of electro-
phoresis of charged particles, for example, the particles
start to move on the application of external electric fields.
The electric double layer, i.e., the cloud of counterions
around charged particles, tends to be deformed and its
distribution becomes anisotropic because of the applied
external field and also of the friction between ions and
fluids. The electrophoretic mobility of a single colloidal
particle is then determined by the balance between the
electrostatic driving force and the hydrodynamic frictional
force acting on the particle. In this situation, the time
evolutions of the colloidal particles, the ions, and the
host fluids are described by coupled equations of hydro-
dynamics (Navier-Stokes) and electrostatics (Poisson) with
proper boundary conditions imposed on the surfaces of the
colloidal particles. However, the usual numerical tech-
niques of partial differential equations are hopeless in
dealing with the dynamical evolution of many-particle
systems since the moving particle-fluid boundary condition
must be treated at every discrete time step.

In recent years, efforts to resolve hydrodynamic inter-
actions in colloidal dispersions have attracted a lot of
attention. Various advanced methods have been proposed
such as the Stokesian dynamics (SD) [2], the finite ele-
ment method (FEM) [3], the lattice Boltzmann method
(LBM) [4], the stochastic rotation dynamics [5], the fluid
particle dynamics (FPD) [6], and yet another method
which treats solid-fluid interaction efficiently [7].
Pioneering approaches have been proposed also to simu-
late charged colloidal dispersions without hydrody-
namics [8–12]. Although extensions have been done to
take into account the hydrodynamics by using SD [13],
FEM [14], LBM [15–19], and FPD [20], quantitatively
reliable simulations have not yet been performed success-
fully for many-particle dispersions due to the complexity
of the system.

Recently, we developed a reliable and efficient numeri-
cal method, called the smoothed profile (SP) method
06=96(20)=208302(4) 20830
[21,22], to resolve the hydrodynamic interactions acting
on solid particles immersed in Newtonian host fluids. In the
SP method, the original sharp boundaries between colloids
and host fluids are replaced with diffuse interfaces with
finite thickness �. This simple modification greatly im-
proves the performance of numerical computations since
it enables us to use the fixed Cartesian grid even for the
problems with moving boundary conditions.

The SP method is not only applicable to the dispersions
in Newtonian fluids, but particularly suitable for the parti-
cle dispersions in complex fluids. It has already been
applied successfully to liquid crystal colloidal dispersions
[23,24] and charged colloidal dispersions [25]. Field-
particle hybrid simulations were performed where the
average direction of the liquid crystal molecules and the
density of ions were treated as coarse-grained continuum
objects while colloids were treated explicitly as particles.
The interaction between fields and particles was taken
through the diffuse interface. The above methods for the
dispersions in complex fluids are, however, not yet appro-
priate for simulating dynamical phenomena since hydro-
dynamic effects are completely neglected. The purpose of
the present study is to establish an efficient and reliable
simulation method applicable for electrohydrodynamic
phenomena such as electrophoresis by combining our SP
methods for hydrodynamic [21,22] and electrostatic [25]
interactions.

In the present Letter, we briefly outline our numerical
modeling for charged colloidal dispersions and then dem-
onstrate the reliability of the combined SP method by com-
paring our numerical results with classical approximation
theories [26–29]. Finally, comparisons are made for the
electrophoretic mobilities of dense dispersions, where the
simulation results show notable deviations from a mean-
field–type theory according to the cell model [30,31].

Let us consider N spherical particles with radius a, the
massMp, and the inertia tensor Ip in a host fluid consisting
of multicomponent ions of species � with charges Z�e,
where e is the unit charge. The local number density of �
ions is C�� ~r; t� at a time t. The total charge on a colloidal
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particle is Ze, distributed uniformly on its surface. The
velocity field of the host fluid is ~v�~r; t�. The position, the
translational velocity, and the angular velocity of the ith
particle are ~Ri, ~Vi, and ~�i, respectively. We define the
overall profile function ��~r; t� �

PN
i�1 �i�~r; t�, where

�i 2 �0; 1� is the ith particle’s profile field, which is unity
in the particle domain j ~r� ~Rij< a� �=2, zero in the fluid
domain j~r� ~Rij> a� �=2, and has a continuous diffuse
interface within the thin interface domain a� �=2< j ~r�
~Rij< a� �=2 whose thickness is �. The mathematical

definition of �i is given in Ref. [21]. We define the spacial
distribution of the surface charge eq�~r� � Zejr�j=4�a2

using �; then the local density of the total charge is
represented smoothly everywhere in the system by �e� ~r� �P
�Z�eC� � eq. The complete dynamics of the system is

obtained by solving the following time evolution equations
[21,22].

(i) The Navier-Stokes equation:

��@t� ~v 	r� ~v��rp��r2 ~v��er����ex��� ~fp;

(1)

with the incompressible condition r 	 ~v � 0, where � is
the mass density, p is the pressure, � is the shear viscosity
of the host fluid, �ex � � ~E 	 ~r is the external electric
potential due to the constant electric field ~E, and � ~fp
represents the body force arising from the rigidity of the
particles [22]. The electrostatic potential �� ~r� is to be
determined by solving the Poisson equation �r2� �
��e with the dielectric constant � of the host fluid.

(ii) Newton’s and Euler’s equations of motion:

_~R i � ~Vi;Mp
_~Vi � ~FHi � ~Fci ; Ip 	

_~�i � ~NH
i ; (2)

where ~FHi and ~NH
i are the hydrodynamic force and torque

[22], and ~Fci is the force arising from the excluded volume
of particles which prevents colloids from overlapping.
Hereafter, soft-core potential of the truncated Lennard-
Jones potential is adopted for ~Fci . We include the electric
driving force due to ~E in ~FHi .

(iii) Advection-diffusion equation:

@tC


� � �r 	 C



� ~v� f

�1
� r 	 ��I� ~n ~n� 	 C
�r���; (3)

where f� is the ionic friction coefficient, I is the unit
tensor, and ~n is a unit-vector field defined by ~n �
�r�=jr�j. In our method, the actual density fields of
ions are defined as C�� ~r; t� � �1��� ~r; t��C
��~r; t� using
the auxiliary density field C
�� ~r; t�. This definition avoids
penetration of ions into colloids explicitly without using
artificial potentials, which requires smaller time incre-
ments. The operator �I� ~n ~n� in Eq. (3) ensures the con-
servation of C� since the no-penetration condition
~n 	 r�� � 0 is directly assigned at the diffuse interface.
Then the charge neutrality

R
�ed~r � 0 of the total system

is guaranteed automatically. Based on the density func-
tional theory [32,33], the chemical potential is defined as
20830
�� � kBT lnC
� � Z�e����ex�; (4)

where kB is the Boltzmann constant and T is the tempera-
ture. If we set ~v � 0 in Eq. (3), the equilibrium (t! 1)
ionic density is given by the Boltzmann equation

C
� � �C� exp��Z�e����ex�=kBT�: (5)

The bulk salt concentration �C� is related to the Debye

screening length 	�1 � 1=
�������������������������������
4�
B

P
�Z

2
�

�C�
q

, where 
B �
e2=4��kBT is the Bjerrum length, which is approximately
0.72 nm in water at 25 �C.

Simulations have been performed in a three-dimensional
cubic box with the periodic boundary conditions. The
linear dimension is L=��64, where � is the lattice spac-
ing chosen as a unit length, which is taken related to the
Bjerrum length as � � 4�
B. We use the particle radius
a � 5 and the thickness parameter � � 2 throughout the
present simulations. The host fluid contains 1:1 electrolyte
composed of monovalent counterions (� � �) and coions
(� � �). The unit of the energy and the electrostatic
potential is kBT and kBT=e, respectively. The later corre-
sponds to 25.7 mV at 25 �C. The nondimensional parame-
ter m� � 2�kBTf�=3�e2 is set to m� � m� � 0:184,
which corresponds to the value of KCl solution at 25 �C.
Our unit of time � � �2f�=kBT corresponds to 0:44 �s.

We first consider a single charged particle moving with
the drift velocity ~V � ��V; 0; 0� in a constant electric field
~E � �E; 0; 0�. The electrophoretic mobility V=E is related
to the zeta potential � , which is defined as the electrostatic
potential on a slipping plane as

V=E � f��=� (6)

when � is small [1]. The Smoluchowski equation f � 1 is
valid in the limiting case 	a! 1 [27], while the Hückel
equation f � 2=3 is valid in the opposite case 	a! 0
[28]. Henry derived an expression f � fH�	a� which is
valid for a general value of 	a [29]. These equations
indicate that the mobility is proportional to � ; however,
this relation tends to fail for larger � where the relaxation
effect due to deformations of electric double layer becomes
notable. O’Brien and White proposed an approximation
theory which is valid also for larger � [26].

We have performed simulations for electrophoresis of a
single particle in linear response regimes E & 0:15 and
compared them with the O’Brien-White theory. A constant
uniform electric field E � 0:1, which corresponds to
2:85� 103 V=cm, was applied. The terminal V was calcu-
lated for 50  �Z  750 with 	�1 � 10, corresponding
to the salt concentration 11 �mol=l at 25 �C in water. We
chose  � �=� � 5, so the Reynolds number Re � aV=
remains small. In both the O’Brien-White theory and our
simulations, the zeta potential is assumed to be the electro-
static potential at the particle surface, � � �jsurface. In our
simulations, the surface charges were chosen as Z � �50,
�100,�200,�300,�400,�500, and �750, correspond-
ing to y � 0:525, 1.044, 2.035, 2.927, 3.692, 4.332, and
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5.510, respectively. Here the dimensionless zeta potential
y � e�=kBT is introduced. A relationship between the
surface charge jZje and the dimensionless zeta potential
y is shown in Fig. 1(a), where our numerical results are
plotted together with an analytic solution of the nonlinear
Poisson-Boltzmann (PB) equation [34] and the Debye-
Hückel linearized solution � � jZje=4�a2�	�1� 	a�1�.
We see that our numerical results are consistent with the
nonlinear PB theory. In Fig. 1(b), the dimensionless mo-
bility Em � 3e�V=2�kBTE is plotted as a function of the
dimensionless zeta potential with 	a � 0:5. It is clearly
demonstrated that our method reproduced the O’Brien-
White theory almost perfectly including the nonlinear
regime y � 2 within only a few percent error. We empha-
size that such a precise agreement with the theory has never
been obtained by any simulation methods so far proposed.
The distributions of charge density due to counterions and
coions are shown in Fig. 1(c) for y � 1:044 and (d) for y �
3:692. One can see that the electric double layer is de-
formed considerably in the nonlinear regime (d), while it is
almost isotropic in the linear regime (c). As mentioned
before, the relaxation effect due to the deformed double
layer causes the nonlinearity in Em.

Our simulation method is easily applicable to dense
dispersions consisting of many particles. We thus exam-
ined the effect of the particle concentration on the electro-
phoretic mobility. The linearized theory for a single
FIG. 1 (color). Relationship between surface charge jZje and
dimensionless zeta potential y (a). Our numerical data follow
nicely on the analytic solution of the nonlinear PB equation [34]
but deviates notably from the Debye-Hückel linearized theory.
Dimensionless mobility Em of a single particle is plotted in (b) as
a function of dimensionless zeta potential y. For comparison,
results of Smoluchowski, Henry, and O’Brien-White for 	a �
0:5 are plotted. The color contours in (c) and (d) represent the
total ionic charge density

P
�eZ�C� around a single particle for

(c) Z � �100 and (d) Z � �500. The electric field is applied in
the horizontal (� x) direction.
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particle Eq. (6) is still valid for dense dispersions when E
is small; however, f is now depending on both 	a and ’.
Simulations were carried out with Z � �100 and E � 0:1
for various particle volume fractions ’ � 4�a3N=3L3 to
calculate f�	a;’� � �V=��E. The Debye length 	�1 is
taken to be 5 and 10, which correspond to 	a � 1 and 0.5,
respectively. The corresponding salt concentration is
44 �mol=l for 	�1 � 5 and 11 �mol=l for 	�1 � 10,
respectively. Figure 2 shows typical snapshots of the sys-
tems with (a) fcc, (b) bcc, and (c) random configurations
[35]. The horizontal color map represents the charge den-
sity for 	a � 1 on a cross section perpendicular to the z
axis. In the cases of fcc and bcc, E was applied perpen-
dicular to the (1,0,0) and (1,1,1) faces, but we obtained
very small differences within only 1%.

The mobility coefficient f�	a;’� for 	a � 1 and 0.5 is
plotted as a function of ’ in Figs. 3(a) and 3(b), respec-
tively. We found that f decreases rapidly with increasing
’. Furthermore, the overall behavior looks almost inde-
pendent of the particle configurations. A theoretical model
has been proposed by Levine and Neale for the electro-
phoretic mobility of dense dispersions by using the cell
model [30]. They assumed the situation that a spherical
particle with radius a is located at the center of a spherical
container (cell) with radius b and calculated V as a func-
tion of 	a and ’ � �a=b�3. Ohshima proposed a simpler
expression for the mobility coefficient f according to the
cell model [31]. Ohshima’s prediction is shown in
Figs. 3(a) and 3(b) together with our numerical results.
The overall agreement between our simulation and
Ohshima’s theory is better in (a) with a smaller Debye
length 	�1 � 5 � a than in (b) with a larger one 	�1 �
10. In both (a) and (b), the simulation results tend to be
larger than the theory as ’ increases. We expect that the
deviation is attributable to the occurrence of overlapping of
the electric double layers for larger ’ because such an
effect is totally neglected in the theory. To this end, we
estimated the effective radius a� 	�1 of the ionically
dressed particles and defined the effective volume fraction
’eff � 4��a� 	�1�3N=3L3 � �1� �	a��1�3’. As is
clearly seen in Figs. 3(a) and 3(b), our results agree well
with Ohshima’s theory for ’eff  1 where the effect of
FIG. 2 (color). Snapshots of the electrophoresis of dense dis-
persions with (a) fcc, (b) bcc, and (c) random particle configu-
rations. The color map represents the total ionic charge densityP
�eZ�C� in a plane perpendicular to the z axis. The electric

field is applied in the �x direction normal to (1,0,0) face for fcc
and bcc. See movies in Ref. [35].
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FIG. 3 (color online). The mobility coefficient f�	a;’� as a
function of the volume fraction ’ in (a) 	a � 1 and
(b) 	a � 0:5. The solid lines represent the approximation theory
proposed by Ohshima [31]. The theory is confirmed to be
accurate for ’eff  1, but tends to deviate from our numerical
results for ’eff > 1 where overlapping of the electric double
layers becomes notable.
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overlapping is small. However, for ’eff > 1 where the
overlapping of the electric double layers becomes large,
deviations between our simulations and the theory become
notable. We emphasize that the present study is the first
successful simulations which provide quantitative data
necessary to examine the reliability of the Ohshima’s cell
model calculations including their boundary conditions for
electrophoresis in dense colloidal dispersions. Our results
are consistent with recent studies which also to take into
account the effects of double layer overlapping [19,36,37].

In summary, we have developed a unique numerical
method for simulating electrohydrodynamic phenomena
in colloidal dispersions. The method was first applied to
simulate electrophoresis of a single spherical particle, and
we found that our method can reproduce quantitatively the
reliable analytical theory proposed by O’Brien and White.
Simulations were then performed for electrophoresis of
colloids in dense dispersions, and we compared them
with the theoretical analysis based on the cell model. We
found that the cell model is reliable when overlapping of
electric double layers is small but less reliable as over-
lapping becomes larger.
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[1] W. B. Russel, D. A. Saville, and W. R. Schowalter,
Colloidal Dispersions (Cambridge University Press,
Cambridge, 1989).

[2] J. F. Brady and G. Bossis, Annu. Rev. Fluid Mech. 20, 111
(1988).

[3] H. H. Hu, N. A. Patankar, and M. Y. Zhu, J. Comput. Phys.
169, 427 (2001).

[4] A. J. C. Ladd and R. Verberg, J. Stat. Phys. 104, 1191
(2001).

[5] A. Malevanets and R. Kapral, J. Chem. Phys. 110, 8605
(1999).

[6] H. Tanaka and T. Araki, Phys. Rev. Lett. 85, 1338 (2000).
20830
[7] T. Kajishima, S. Takiguchi, H. Hamasaki, and Y. Miyake,
JSME Int. J., Ser. B 44, 526 (2001).

[8] M. Fushiki, J. Chem. Phys. 97, 6700 (1992).
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