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Direct numerical simulations of anisotropic diffusion of spherical particles in sedimentation
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We investigated the scaling of the hydrodynamic velocity fluctuations and self-diffusion in the sedimentation
of monodispersed spherical particles via direct numerical simulations using the smoothed profile method over a
moderate range of volume fractions (0.01 � φ � 0.12). Hydrodynamic velocity fluctuations are visible at large
Peclet numbers (Pe), and they scale as (φL/a)1/2 at low volume fractions (φ � 0.04). Their characteristics become
independent of volume fraction at moderate volume fractions (0.06 � φ � 0.12). Both vertical and horizontal
self-diffusion coefficients scale as (L/a)3/2φ1/2 at low volume fractions. At moderate volume fractions, the vertical
diffusion scales as (L/a)3/2φ−1/2; in contrast, the horizontal diffusion is saturated with respect to volume fraction.
The diffusion anisotropy increases with increasing Pe and saturates at high Pe values. The saturated value remains
unchanged at low volume fractions, whereas further increase in the volume fraction decreases this anisotropy.
The reduction of this anisotropy is attributed to the φ−1/2 scaling of the vertical relaxation time at moderate
volume fractions; however, the horizontal relaxation time is independent of the volume fraction at this regime.

DOI: 10.1103/PhysRevE.87.022310 PACS number(s): 82.70.Dd, 31.15.xv, 46.15.−x, 82.20.Wt

I. INTRODUCTION

The settling of particles in a viscous fluid is a fundamental
phenomenon of nonequilibrium suspension dynamics, but the
topic is extremely challenging to examine because accurately
characterizing the long-range many-body interactions between
the particles proves difficult. These interparticle interactions,
caused by fluid flow, are referred to as hydrodynamic in-
teractions (HIs). These HIs may decay as slowly as 1/r ,
strongly affecting the dynamic behavior of the suspension.
Although many experimental [1–6], theoretical [7–9], and
numerical [10–25] investigations have been performed to
provide a basic understanding of sedimentation, knowledge of
the HIs remains incomplete. Significant progress was made
by Batchelor [26], who explained the hindered settling of
the sedimenting particles and obtained an expression of the
form Vs = V

φ=0
s (1 − kφ) in which V

φ=0
s = 2

9ga2(ρp − ρf)/η
represents the Stokes velocity [27] of a single particle, a is the
particle radius, ρp is the particle density, ρf is the fluid density,
g is the gravitational acceleration, η is the fluid viscosity, φ is
the particle volume fraction, and k is a constant that shows the
effect of fluid backflow [28].

Due to the constantly changing configuration of the sus-
pension microstructure, the velocity of the individual particles
fluctuates around their mean settling velocity. Inconsistencies
exist between the experiments [1,2], and the simulations [13]
and theory [7,8]; the velocity fluctuations predicted by the
theory and numerical simulations depend on the system size,
but the experiments exhibit no such dependency. Subsequent
studies have shown that if the simulations exhibit dependence
on container size, some screening or cutoff length scale
must exist in the suspension microstructure that depends on
the particle volume fraction [29]. This inconsistency was
solved by Segre et al. [4], who introduced the concept of
a characteristic swirl size or correlation length: Velocity
fluctuations are explained as a function of cell size only when

*hamid@cheme.kyoto-u.ac.jp
†ryoichi@cheme.kyoto-u.ac.jp

the cell size is less than the swirl size. These results were
later confirmed by Nguyen and Ladd [14], using the lattice
Boltzmann method (LBM). These velocity fluctuations are
strongly anisotropic, with the vertical velocity fluctuations
larger than the horizontal.

The disagreement between the experiments and the early
simulations stimulated further work to address the nature
of the screening mechanism for the velocity fluctuations
(i.e., the manner in which correlations in the fluctuations
decay over time and space). Shaqfeh and Koch [8] proposed
a Debye-like screening, and Ramaswamy [30] proposed a
stochastic convection-diffusion model; however, these ideas
were not confirmed by the simulations of Ladd et al. [10–14].
Hinch [31] suggested another mechanism in which the bottom
wall acts as a sink for fluctuations. This mechanism was
confirmed using simulations [13,14]. Some authors [6,14]
posited that stratification and polydispersity also play key roles
in screening. More details can be found in Guazzelli’s review
paper [32].

Self-diffusion is one of the most important parameters of
sedimentation due to its role in mixing and other chemical pro-
cesses. This diffusion is referred to as hydrodynamic diffusion
because it originates in the HIs between the particles. As with
the velocity fluctuations, hydrodynamic diffusion obtained
from the simulations is affected not only by the size of the
simulation box but also by its shape. Diffusion is also strongly
anisotropic, with vertical diffusion greater than horizontal.
This anisotropic behavior arises from the anisotropic nature of
the velocity fluctuations and their relaxation times [33]. Early
self-diffusion simulations [10] yielded a large value for this
anisotropy. A more realistic value of the anisotropy was later
obtained by Ladd [12] and Cunha [19]; the former increased
the aspect ratio of the periodic box, and the latter used dynamic
simulations with an impenetrable lower boundary. Despite the
importance of hydrodynamic diffusion in industrial chemical
research, few simulations [10,11,18,19] have been performed
to address its behavior.

Under sedimentation, the microstructure of the suspension
is determined by the long-range HIs, which are characterized
by large time and length scales, features that render the
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nonequilibrium properties of the colloidal particles chal-
lenging to simulate. Different methods [10,18,19,34–36] are
available to simulate the nonequilibrium colloidal phenomena,
e.g., Stokesian dynamics [34], LBM [10–15], dissipative
particle dynamics [35], stochastic rotation dynamics (SRD)
[16], and direct numerical simulations (DNS) [19]. More
details on these methods are presented by Padding et al. [17]
and Ladd et al. [15]. In this study, we used DNS with the
smoothed profile (SP) method, which replaces the original
sharp boundaries between the particle and the host fluid
with a diffuse interface of finite thickness. This approach
enabled us to use a fixed Cartesian grid, thereby significantly
improving the speed of the numerical computations. A similar
smoothed profile [37] was adopted in the previously proposed
fluid-particle dynamics (FPD) method in which particles are
modelled by a highly viscous fluid. We treated the particles as
nondeformable solids such that no additional constraints arose.

Unlike most previous studies [3,5,13,19], which were
performed in a non-Brownian regime (Pe → ∞), we focused
our work in the finite Peclet number (Pe) regime with different
volume fractions and system sizes. Sedimentation at finite Pe
values describes the relative effects of thermal fluctuations
(caused by collisions between colloids and solvent particles)
and hydrodynamic fluctuations (caused by hydrodynamic
flows of the solvent). We investigated the imprints of these
relative effects on the anisotropic behavior of the velocity
fluctuations and diffusion. Padding et al. [16–18] were the first
to simulate sedimentation at a finite Pe using coarse-grained
SRD simulations. The simplified dynamics allowed accurate
calculation of the transport properties; however, due to its
stochastic nature, SRD is less effective than pre-averaged LBM
for large Pe. In SRD, the highest achievable Pe is limited
by the constraints on the Mach and Reynolds numbers (Re),
whereas in the SP method, the highest Pe is limited only by
Re. Consequently, a wide range of Pe is achievable using
our method. Padding [16–18] focused his work in the low
volume fraction regime. The present work not only validates
the work of Padding at low volume fraction but also explores
the effects of moderate volume fraction on velocity fluctuations
and anisotropic diffusion.

The main objective of the present study is to investigate
the relative effects of thermal and hydrodynamic forces
on velocity fluctuations and particle diffusion for different
volume fractions. In the previous studies [38,39], we have
examined the finite Pe effects at a single volume fraction
(φ = 0.02), whereas in the present study, we investigated the
scaling relations of hydrodynamic velocity fluctuations and
self-diffusion at different system sizes and volume fractions.
Working along the lines of Caflish and Luke [7], Hinch [31]
previously suggested the scaling of velocity fluctuations and
self-diffusion, which is valid for a low volume fraction.
However, the high volume fraction regime requires additional
attention. This paper provides insights into the anisotropic
behavior of diffusion at finite Pe. We also suggest valid scaling
relations of the velocity fluctuations, their relaxation times, and
self-diffusion for a moderate volume fraction regime. In this
paper, Sec. II explains the simulation method, and Sec. III
describes the selection of the working parameters. The results
are provided in Sec. IV, and we present conclusions based on
our work in Sec. V.

II. SIMULATION METHOD

In the SP method, the colloid surface is not treated as a
sharp interface lacking thickness, but an intermediate region is
introduced at the surface. This intermediate region or interface
has a width comparable to or larger than the grid spacing,
and the colloid’s density profile is defined such that it changes
smoothly within that interface. Quantities such as the velocity
and pressure are defined over the entire computational domain,
which includes the colloid and the solvent. A smoothed
profile function [36] 0 � φ(x,t) � 1 is used to distinguish
between the fluid and particle domains in which x denotes
the particle spacial position. Here, φ = 0 stands for fluid,
0 < φ < 1 describes the interface and φ = 1 represents the
particle domain. In this section, we briefly explain the salient
features of our method. The detailed formulas, algorithm, and
applicability of the SP method can be found in the literature
[36,40–44].

The motion of the ith colloidal particle is obtained by
solving Newton’s equations of motion:

Mi V̇ i = FH
i + Fc

i + Fext
i + GV

i , Ṙi = V i (1)

I i · �̇i = NH
i + Next

i + G�
i , (2)

in which Ri is the position of the particle, and V i and �i

are the translational and rotational velocity of the particle,
respectively. The mass and moment of inertia are denoted
by Mi and I i , respectively. The hydrodynamic torque and
force exerted by the solvent on the particle are represented
by NH

i and FH
i , respectively. The Fext

i and Next
i are the

external force and torque, respectively. The GV
i and G�

i are the
random force and torque due to thermal fluctuations, which
can be described as 〈Gn

i (t)Gn
j (0)〉 = αn Iδ(t)δij in which

〈Gn
i (t)〉 = 0 and αn (n ∈ V,�) is the parameter that controls

the temperature of the system T . The actual value of the particle
temperature is determined using the long-time diffusion coeffi-
cient of the equilibrium system. When simulating a Brownian
particle using HIs, the diffusion coefficient is affected by
the finite size effects (i.e., artifacts arise when the system
size is smaller than the correlation length). These effects can
be accounted for by D0

φ=0 = D0K(φ), in which D0
φ=0 is the

thermal diffusion coefficient of a Brownian particle at infinite
dilution, D0 is the thermal diffusion coefficient of Brownian
particles obtained for φ �= 0, and K(φ) is the coefficient
that represents the effects of the finite volume fraction of
dispersed particles under periodic boundary conditions [45].
Finally, the temperature of the system can be determined
using the Stokes-Einstein equation, kBT = 6πηaD0

φ=0. The
detailed implementation of Brownian motion in some test
cases is presented by Iwashita et al. [41]. Direct interparticle
interactions are denoted by Fc

i , and we represent these
interactions as a truncated Lennard-Jones (LJ) potential with
the large powers of 24:12, which can be defined as follows:

ULJ(rij ) =
{

4ε
[(

σ
rij

)24 − (
σ
rij

)12] + ε
(
rij � 2

1
12 σ

)
,

0
(
rij > 2

1
12 σ

)
,

(3)

in which rij = |Ri − Rj |. The parameters σ and ε denote the
length and energy units of the LJ potential, respectively, with
σ = 2a representing the particle diameter.
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In the SP method, the solvent motion is obtained by solving
the modified Navier-Stokes equation:

ρf (∂tv + v · ∇v) = −∇p + η∇2v + ρfφ f p (4)

for the total velocity field v and the pressure field p under the
incompressibility condition (∇ · v = 0). The rigidity of the
particle and the fluid/particle nonslip boundary conditions are
incorporated through the body force φ f p [36,40]. Moreover,
an estimation of the error [46], a comparison of the SP
method with the force-coupling method (FCM) [47], and a
high resolution DNS [48] based on high-order spectral/hp
element discretization on hybrid grids revealed that, compared
with FCM and aforementioned DNS scheme, the SP method is
computationally less expensive and advantageous for simulat-
ing moving particles because it avoids complex discretizations
around the particles. This study simulated many test cases and
found that the SP method accurately resolves the near-field
and far-field flows.

III. SIMULATION PARAMETERS

A number of simulations were performed under periodic
boundary conditions with a volume fraction ranging from
0.01 to 0.12. In the present study, we divide the range of
volume fractions into a low volume fraction regime defined as
φ � 0.04 and a moderate volume fraction regime defined as
0.06 � φ � 0.12. This division helps to explain the scaling of
the hydrodynamic velocity fluctuations and the self-diffusion
in an effective way, which will be explained later. Three
different cubic periodic boxes of dimensions L = 64�, 128�,
and 256� were used and the particle size was held constant
at 4� for all simulations in which the grid spacing � is
taken as the unit of length. For given values of η and ρf ,
the remaining units of mass, time, pressure, and energy are
defined as ρf�

3, ρf�
2/η, η2/ρf�

2, and η2�/ρf , respectively.
The thermal fluctuations kBT were maintained at ∼0.3, and the
ε of the LJ potential was set at 2.5. Gravity was introduced in
the z direction, and the Pe was increased by increasing the grav-
itational force. We held the particle-to-fluid-density ratio at 5 to
have a large range of Pe. The center-of-mass of the whole fluid
is constant to avoid an indefinite acceleration of the system.

In this study, the range of Pe is achieved by increasing
the value of gravity, which is introduced in the z direction.
The increase in gravity also increases the Reynolds number,
Re = ρfaV

φ=0
s /η from 10−3 to 0.2, which is low enough

to ignore the inertial effects and remains within the Stokes
regime. In contrast to the simulations studies [18,19], most
of the experiments [1,2,4,32] have been performed at low Re
values, usually of the order of 10−5 or less. Because a relative
deviation from the Stokes regime scales with the square of Re,
we can probe relatively high Re values without straying from
the relevant experimental conditions. In addition, maintaining
such a low value of Re is computationally more expensive.
For a given initial configuration, particles require a certain
time to acquire their steady-state velocities and positions.
We monitored the data, and only that corresponding to the
steady-state velocities is used. The simulations are run up to
500ts for Pe = 0.7 and to 1200ts for Pe > 50; sufficient to
yield statistically meaningful data for the analysis in which ts
denotes the Stokes time.
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FIG. 1. (Color online) Radial distribution function g(r) for
different Pe values. Simulations are performed in a cubic periodic
box of length L/a = 32 with a particle size of a = 4, keeping φ and
kBT constant at ≈0.08 and 0.3, respectively.

The Peclet number, which is the ratio of convection to
diffusion, can be defined as follows:

Pe = aV
φ=0

s

D0
. (5)

One can expect HIs to play a dominant role at higher Pe values,
thereby leading to changes in the microstructure. The HIs are
increased with an increase in Pe. The additional hindrance
caused by these HIs changes the microstructure of the system.
A quantitative measure of the microstructure at the particle
scale is provided by the radial distribution function (RDF),

g(r) = 2L3

N2

〈 ∑
i<j

δ(r − r ij )

〉
, (6)

in which N is the total number of particles, r = |r|,
r ij = Ri − Rj , 〈· · ·〉 denotes an ensemble average, and the
summation

∑
i<j is taken over all particle pairs. The definition

of g(r) is such that 4πρg(r)r2�r represents the mean number
of particles in a shell of radius r and thickness �r that
surrounds a particle at the origin [49]. Figure 1 shows the g(r)
for different Pe values for a system of size L/a = 32 and φ =
0.08. The peak of the function increases with increasing Pe,
demonstrating the formation of aggregates or particle clusters
in close contact. This clustering is induced by the dominance
of hydrodynamic forces with increasing Pe, which, in turn,
progressively reduces the effects of random motion. A similar
phenomena has also been observed by Brady et al. [50] in their
investigation of the relative effects of thermal and shear forces.
They reduced the effects of thermal fluctuations by increasing
the shear rate and observed a similar cluster formation. Apart
from the initial peak, the results are indistinguishable from the
equilibrium results for Pe � 9, demonstrating the strong effect
of the thermal fluctuations. For Pe > 9, these results are differ-
entiable, providing evidence that the HIs exert a progressively
dominating effect. A relatively large change in the RDF at Pe �
24 indicates that the HIs overpower the sedimentation phenom-
ena. Moreover, the peak of g(r) at Pe = 0 is higher than the
peak value provided by the well-known exact solution [51,52]
of the Percus-Yevick (PY) integral equation for the RDF.
In our results, this discrepancy arises from an overlapping
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of the smoothed profiles of two particles in close contact.
Similar discrepancies are also reported in the literature [18].

IV. RESULTS AND DISCUSSION

A. Hydrodynamic velocity fluctuations and their scaling

One of the main objectives of the current study is to develop
a scaling for the hydrodynamic velocity fluctuations and their
relaxation times, which are two of the key parameters for
diffusion in sedimentation. To establish a scaling relationship
that accounts for the effects of system size, volume fraction,
and thermal fluctuations on the hydrodynamic velocity fluctu-
ations, we calculate the temporal autocorrelation functions of
the velocity fluctuations as follows:

Cx(t) = 〈Vix(t)Vix(0)〉 (7)

and

Cz(t) = 〈δViz(t)δViz(0)〉, (8)

in which δViz = Viz − Vsed, Viz and Vix are the temporal
velocities of the ith particle in the z and x direction,
respectively, and Vsed = 〈Viz〉 is the mean settling velocity
of the particles.

Figure 2 shows the time decay of the correlation functions
for the z and x components of the velocity fluctuations at
φ = 0.04 and L/a = 32. The main plots in Fig. 2 use the initial
fluctuations Cz(0) and Cx(0) as normalization constants to
visualize the relaxation of the velocity fluctuations, whereas
the figure insets use the square of the Stokes velocity to
normalize the correlations, highlighting the effects of the
nonequilibrium hydrodynamic fluctuations. Time is normal-
ized by the Stokes time ts such that ts = a/V

φ=0
s .

The main plots in Figs. 2(a) and 2(b) indicate that the
large difference in relaxation times for the vertical and
horizontal correlations, whereas the experiments [1] show a
small difference in these time scales. The theory proposed by
Koch [33] suggests that this difference between the relaxation
times originates from the vertical periodic boundary conditions
because less time is required for a particle to sample all vertical
positions than is required to sample the horizontal positions.
This difference in time scales can be reduced by increasing
the aspect ratio of the periodic box or by increasing the
volume fraction of the particles. The simulations performed
by Ladd [10] and Padding [18] observed the same phenomena
using vertical periodic boundary conditions.

At low Pe, the strong effects of the thermal fluctuations
cause a rapid decay in the correlations, whereas at higher
Pe, an exponential decay is evident as shown in Fig. 2.
In an experimental study, Nicolai et al. [1] observed an
exponential relaxation of the temporal correlations of velocity
fluctuations of the form Cβ(t) = (�V

β

H )2 exp(−t/τ
β

H ) in which
�V

β

H (β ∈ x,z) and τ
β

H denote the amplitude and relaxation
time of the hydrodynamic velocity fluctuations, respectively.
The present DNS results support the following forms for the
autocorrelations of the velocity fluctuations as the simulations
are performed at finite Pe:

Cx(t) = C0(t) + (
�V x

H

)2
exp

(−t
/
τ x

H

)
, (9)

Cz(t) = C0(t) + (
�V z

H

)2
exp

(−t
/
τ z

H

)
, (10)
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FIG. 2. (Color online) Temporal autocorrelation functions of the
vertical [Cz(t)] and horizontal [Cx(t)] velocity fluctuations. The
main plots show the correlation functions normalized by the initial
fluctuations, whereas the temporal correlation functions shown in
the insets are normalized by the square of the Stokes velocity
on a semilog scale. The insets also indicate that at large values
of Pe, these correlation functions relax exponentially according to
Cβ (t) = (�V

β

H )2 exp(−t/τ
β

H ) as shown by the dotted lines in which
�V

β

H (β ∈ x,z) and τ
β

H denote the amplitude and the relaxation
time of the hydrodynamic velocity fluctuations, respectively. Time
is normalized by the Stokes time as ts = a/V φ=0

s .

in which C0(t) represents the velocity autocorrelation function
in the presence of thermal fluctuations but without gravity,
which becomes negligible at higher Pe. These equations rep-
resent the summation of the pure thermal and hydrodynamic
forces; the former is dominant at low Pe, and the latter plays
a key role at high Pe. In addition to these two Pe regimes,
a transition regime is also expected to exist in which neither
of these two forces is dominant. Hence, the scaling relations
for the diffusion coefficients based on Eqs. (9) and (10) should
deviate from simulation results in this transition regime, which
will be tested later.

At finite Pe, the velocity fluctuations consist of a thermal
and a hydrodynamic component. The dominant role of the
hydrodynamic fluctuations at higher Pe causes the correlation
functions to fall on the same curve when scaled with the square
of the Stokes velocity as suggested by Nicolai (see Fig. 2
insets). Our data demonstrate good agreement with the fitted
curves.

We obtained the values of �V
β

H and τ
β

H at different
volume fractions and system sizes from the exponential
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FIG. 3. (Color online) Scaling of the hydrodynamic velocity
fluctuations (left scale) and their relaxation times (right scale) as
a function of volume fraction, using three different system sizes:
L/a = 16, 32, and 64. The solid lines indicate a scaling to �V

β

H /Vs
φ=0

of the form
√

Aβ
1 Lφ/a, whereas the dashed lines indicate a scaling to

τ
β

H/ts of the form A
β

2

√
L/(φa). The simulation results are represented

by points. The symbols and lines are color coded with respect to the
system size.

fits. These values are plotted in Fig. 3 for three different
system sizes. Hinch [31] proposed scaling relationships for the
hydrodynamic velocity fluctuations (�V

β

H ) and their relaxation
times (τβ

H ). Cunha et al. [19] explained this scaling by
hypothetically dividing the simulation box into two equal parts.
The imbalance in the particle weight caused by variations in
the particle number in both parts is balanced by the Stokes
drag. They predicted the scaling relations as �V

β

H /Vs
φ=0 =√

Aβ
1 Lφ/a and τ

β

H/ts = A
β

2

√
L/(φa) in which A

β

1 and A
β

2
are constants that depend on the system parameters (e.g., the
container shape, swirl size, particle shape, and polydispersity).
This simple scaling is expected to work well for low volume
fractions.

The prefactors A
β

1 and A
β

2 are obtained by fitting the
scaling relationships to the simulation data, as shown in Fig. 3,
which demonstrates the scaling of the hydrodynamic velocity
fluctuations and their relaxation times as a function of the
volume fraction for three different system sizes both in the x

and z direction. Our simulation results are in good agreement
with the scaling relations in the low volume fraction regime,
but deviations are evident in the moderate volume fraction for
all system sizes. Figure 3 also depicts that, for a given system
size, �V

β

H and τ x
H reach a saturation value at moderate volume

fractions. The simulations of Padding et al. [18], Cunha et al.
[19], and the rationalized results [9] (considering the side wall
effects) of Segre et al. [4] also demonstrated similar scaling
at low volume fractions. Cunha showed the transition from
φ1/2, but unfortunately the scaling was unclear at high volume
fraction. In contrast, Brenner [9] theoretically proposed the
transition from φ1/2 to φ1/3, which is not confirmed by any
other simulation or experimental study. In contrast to τ x

H, τ z
H

follows the φ−1/2 scaling for the full range of volume fraction.
Kuusela et al. [24] and Padding et al. [18] found a similar
scaling relation in their studies. This different decay pattern
in the vertical direction is attributed to enhanced memory
effects in the direction of flow. In contrast, experiments of
Nicolai et al. [1] did not find any clear decay pattern. It
is well known [9] that experiments are affected by many
nonideal conditions, such as secondary flow, instability, side
wall effects, and polydispersity. These nonideal conditions,
especially polydispersity and side walls, greatly affect the
relaxation time [9,14].

The velocity fluctuations and their relaxation times in both
directions scale as (L/a)1/2 for the full range of volume frac-
tions studied, indicating that our simulations are in a spatially
correlated regime. The relevant scaling effects induced by the
size dependence of this finite system are discussed in detail in
Sec. IV C. The summary of the scaling is presented in Table I.

These findings at moderate volume fraction lead us to
split the scaling relationships into two: one for low volume
fractions (φ � 0.04), similar to that observed in other studies
[9,18,19], and a second for moderate volume fractions (0.06 �
φ � 0.12) as shown in Eqs. (11)–(13):

�V
β

H

/
Vs

φ=0 =
⎧⎨
⎩

√
A

β

1 Lφ/a, (φ � 0.04)√
A

β

1 Lφ
Vβ

sat/a, (0.06 � φ � 0.12)
(11)

τ x
H

/
ts =

⎧⎨
⎩

Ax
2

√
L/(φa), (φ � 0.04)

Ax
2

√
L/

(
φ

τx

sata
)

(0.06 � φ � 0.12)
, (12)

and

τ z
H

/
ts = {

Az
2

√
L/(φa), (φ � 0.12), (13)

in which φ
Vβ

sat provides the saturation value of the hydrody-
namic velocity fluctuations with respect to the volume fraction
in both the x and z directions at moderate volume fractions.

TABLE I. Summary of the scaling obtained for the hydrodynamic
velocity fluctuations (�V

β

H /V φ=0
s ) and their relaxation times (τβ

H /ts)
in both the vertical and horizontal directions. In addition to the above
scaling, both �V

β

H /V φ=0
s and τ

β

H /ts are scaled as (L/a)1/2 with system
size in the low to moderate volume fraction regimes.

Scaling of �V
β

H /V φ=0
s and τ

β

H /ts

Low φ Moderate φ

(φ � 0.04) (0.06 � φ � 0.12)
�V x

H /V φ=0
s ∼φ1/2 ∼φ0

�V z
H /V φ=0

s ∼φ1/2 ∼φ0

τ x
H /ts ∼φ−1/2 ∼φ0

τ z
H /ts ∼φ−1/2 ∼φ−1/2
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FIG. 4. (Color online) Hydrodynamic velocity fluctuation relax-
ation times for both the vertical and horizontal directions as a function
of volume fraction. The dashed line indicates the scaling of τ x

H /ts and
the dot-dashed line indicates the scaling of τ z

H /ts . The simulation data
are represented by points. This plot shows that the difference in the
vertical and horizontal relaxation times decreases with increasing
volume fraction at moderate volume fraction regimes. Our data show
good agreement with the scaling Eqs. (12) and (13).

Furthermore, φ
τx

sat is the saturation value of the relaxation
time in the x direction only, as vertical relaxation times
obey the corresponding scaling for the full range of volume
fractions as evident in Eqs. (12) and (13). Similar phenomena
have been observed by Ladd [10] in a simulation study in
which no change was found in the horizontal relaxation time
at φ = 0.05 and φ = 0.25, but the vertical relaxation time
decreased at these volume fractions. In the same study, Ladd
also reported a saturation of the vertical relaxation times at
high volume fractions (φ � 0.45). In an experimental study,
Bernard et al. [53] explored the dependency of the relaxation
time on the volume fraction and system size and determined
that the relaxation time scaled as (L/a)0.65±0.1, in agreement
with the (L/a)0.5 scaling observed in this study. Unlike the
present study, Bernard found no systematic dependency of the
relaxation time on the volume fraction.

The different scaling of the vertical and horizontal relax-
ation times at moderate volume fractions leads to a decrease in
the difference between the vertical and horizontal relaxation
times with increasing volume fraction as shown in Fig. 4.
This finding is important because it aids in characterizing the
anisotropic nature of diffusion. Further discussion on the effect
of this decrease is presented in Sec. IV B. Our data show good
consistency with the scaling Eqs. (11)–(13).

The prefactors A
β

1 and A
β

2 are determined from the fits to
be Az

1 ≈ 0.151, Az
2 ≈ 0.9857, Ax

1 ≈ 0.0253, and Ax
2 ≈ 0.239

TABLE II. A quantitative comparison of the fitting coefficients
obtained by fitting Eqs. (11)–(13) onto the simulation data. The
difference between the x- and z-direction coefficients indicates the
anisotropic nature of the phenomena.

Scaling coefficients Values

Ax
1 0.0253

Ax
2 0.239

Az
1 0.151

Az
2 0.9857

φ
Vx
sat 0.0514

φ
Vz

sat 0.037
φ

τx
sat 0.0526

at low volume fractions. For moderate volume fractions, we
extracted the values of φ

Vβ

sat and φ
τx

sat by fitting the scaling
relationships and obtained φ

Vz

sat = 0.037, φ
Vx

sat = 0.05135, and
φ

τx

sat = 0.0526. The values of these fitting coefficients are also
summarized in Table II. The differences in the vertical and
horizontal prefactors indicate the anisotropic behavior of the
velocity fluctuations, with vertical fluctuations larger than the
horizontal ones. This anisotropy in the velocity fluctuations
varies from 2.5 to 4 in the simulations [10,12,19,21]. The
experiments [1,4] have provided a value of ≈2.5. Notably,
the ratio of the vertical to horizontal hydrodynamic velocity
fluctuations in this study is �VH

z/�VH
x ≈ 2.44 at low

volume fractions, and 2.07 at moderate volume fractions,
which are in good agreement with the experimental [1,4]
and simulation [21] results. This anisotropic behavior in the
velocity fluctuations is believed to be due to the asymmetry of
the system induced by gravity.

B. Scaling and anisotropic behavior of diffusion

Diffusion occurs due to the fluctuating motion of particles.
Individual particles lose the memory of their velocity after
experiencing hydrodynamic interactions with surrounding par-
ticles and thereafter follow a random-walk diffusion process.
To find the scaling of a long-time steady-state self-diffusion
coefficient, we consider the total diffusion coefficient D as
the sum of the thermal contribution D0 and the hydrodynamic
contribution DH, where the latter is estimated as

D
β

H ≈ (
�V

β

H

)2
τ

β

H . (14)

Based on the aforementioned scaling relationships for �V
β

H

and τ
β

H , for both low and moderate volume fraction regimes,
we can also find the scaling for the diffusion coefficients in the
z and x directions:

Dz/D0 =
{

1 + Az
1A

z
2Pe (L/a)3/2 φ1/2 = 1 + 0.149Pe (L/a)3/2 φ1/2, (φ � 0.04)

1 + Az
1A

z
2φ

Vz

satPe (L/a)3/2 φ−1/2 = 1 + 0.0056Pe (L/a)3/2 φ−1/2, (0.06 � φ � 0.12)
, (15)

Dx/D0 =
{

1 + Ax
1A

x
2Pe (L/a)3/2 φ1/2 = 1 + 0.006Pe (L/a)3/2 φ1/2, (φ � 0.04)

1 + Ax
1A

x
2φ

Vx

sat

(
φ

τx

sat

)−1/2
Pe (L/a)3/2 = 1 + 0.0013Pe (L/a)3/2 , (0.06 � φ � 0.12)

. (16)
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TABLE III. Summary of the scaling obtained for the self-
diffusion coefficients (Dβ/D0) in both the vertical and horizontal
directions. Additionally, diffusion coefficients in both directions scale
as (L/a)3/2 with system size and linearly with Pe.

Scaling of Dβ/D0

Low φ Moderate φ

(φ � 0.04) (0.06 � φ � 0.12)
Dx/D0 ∼φ1/2 ∼φ0

Dz/D0 ∼φ1/2 ∼φ−1/2

These scaling relations indicate that the vertical and
horizontal diffusion coefficients increase linearly with Pe, but
with a smaller prefactor in the horizontal direction. In addition,
they scale as (L/a)3/2 with the system size for the full range of
volume fractions that we have considered. Furthermore, both
the vertical and horizontal diffusion coefficients scale with φ1/2

at low volume fraction, but at moderate volume fraction the
diffusion coefficient in the vertical direction scales as φ−1/2,
and the horizontal diffusion coefficient becomes independent
of volume fraction. This additional dependency on φ−1/2

in the vertical direction causes a decrease in the diffusion
anisotropy with increasing volume fraction. The scaling
relations for the diffusion coefficients are summarized in
Table III.

The long-time steady-state self-diffusion coefficient [Dβ =
limt→∞ Dβ(t)] is obtained from the linear growth of the mean-
square displacement (MSD) in the horizontal and vertical

directions as follows:

Dx(t) = 1

2t
〈(Rix(t) − Rix(0))2〉, (17)

Dz(t) = 1

2t
〈(Riz(t) − Riz(0) − Vsedt)

2〉. (18)

The equilibrium self-diffusion coefficient can be obtained
using the Einstein relationship:

D0 = lim
t→∞

1

6t
〈(Ri(t) − Ri(0))2〉. (19)

Figure 5 shows a comparison of the long-time steady-
state self-diffusion coefficients with the scaling relations.
Figures 5(a) and 5(b) show the diffusion coefficient as a
function of Pe in the horizontal direction for low and moderate
volume fractions, respectively. Figures 5(c) and 5(d) show
the diffusion coefficient in the vertical direction as a function
of Pe for low and moderate volume fractions, respectively.
Figures 5(a) and 5(c) indicate that the diffusion coefficient
increases with increasing volume fraction both in the hor-
izontal and vertical directions at low volume fractions. In
contrast with the low volume fraction regime, the vertical
diffusion coefficient decreases with increasing volume fraction
at moderate volume fractions as shown in Fig. 5(d). Figure 5(b)
demonstrates no change in the horizontal diffusion coefficient.
This decrease in the vertical diffusion coefficient is attributed
to the φ−1/2 scaling of τ z

H. However, due to the saturation of τ x
H

and �V x
H at moderate volume fraction, no change is observed

in the horizontal diffusion coefficient.
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D
o
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D
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(L/a=32)(a) (b)

(c) (d)

FIG. 5. (Color online) A comparison of the long-time steady-state self-diffusion coefficients in both the vertical and horizontal directions
with those predicted by the scaling Eqs. (15) and (16) as a function of Pe. The self-diffusion coefficients are normalized by the equilibrium
diffusion coefficient D0. (a) and (b) show the scaling of Dx/D0 for low and moderate volume fractions, respectively, whereas (c) and (d) show
the scaling of Dz/D0 for low and moderate volume fractions, respectively. The simulation results are represented by points. The lines indicate
the scaling relations. The symbols and lines are color coded with respect to the volume fraction.
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FIG. 6. (Color online) The anisotropy of the vertical (Dz) and
horizontal (Dx) self-diffusion coefficients as a function of Pe for
different volume fractions. The solid lines indicate the scaling of
Dz/Dx at low volume fractions, whereas the dashed lines indicate the
scaling at moderate volume fractions. The scaling lines are obtained
by dividing Eq. (15) with Eq. (16) for the respective volume fraction
regime. Lines and points of the same color indicate the results for the
same volume fraction.

Our simulation results indicate that the diffusion coeffi-
cients increase linearly with increasing Pe, both parallel and
perpendicular to gravity. A deviation from the scaling relations
is evident at low Pe. Because scaling relations are derived by
adding pure thermal and hydrodynamic forces, these relations
are expected to show good agreement with the simulation
results when either thermal or hydrodynamic fluctuations
dominate the phenomena. Hence, this deviation indicates the
transition regime in which neither force is dominant. Our
simulations show good agreement with Eqs. (15) and (16)
at high Pe, demonstrating the dominance of the hydrodynamic
interactions.

The majority of studies [1,4,10,19,23,53] on particle dif-
fusion in sedimentation have focused on the non-Brownian
regime. Particle diffusion and its anisotropic nature at finite
Pe values have not yet been explored. We have attempted to
investigate this anisotropic behavior and found that, for a given
volume fraction, the anisotropy increases with increasing Pe,
becoming saturated at higher Pe as shown in Fig. 6. This
observation suggests that the effect of thermal fluctuations is
significant at low Pe before the HIs begin to dominate the
sedimentation phenomenon. We can predict the anisotropic
behavior of the diffusion at finite Pe with scaling relationships.
Our data show good agreement with the predicted diffusion
anisotropy as indicated in Fig. 6. Furthermore, the scaling
relationships suggest that the saturated or steady-state value of
the anisotropy remains unchanged at low volume fractions and
decreases with increasing volume fraction at moderate volume
fractions as shown in Fig. 6. This decrease in anisotropy is
attributed to the decrease in the difference between the vertical
and horizontal relaxation times. This difference is decreased
by the φ−1/2 scaling of the vertical relaxation time at moderate
volume fractions. The horizontal relaxation time is indepen-
dent of volume fraction in this regime as shown in Table I.

Our simulation results are also compared with the previous
experimental and simulation results in Fig. 7, which shows
the diffusion anisotropy as a function of the volume fraction.

100

101

102

0  0.02  0.04  0.06  0.08  0.1  0.12

D
z/

D
x

φ

Scaling
Present Study

Nicolai [1]
Padding [18]

Cunha [19]
Ladd [12]

Kuusela [24]

FIG. 7. (Color online) Comparison of the diffusion anisotropy
with the scaling and previously published experimental and simulated
data. Nicolai [1] obtained the low anisotropy value in an experimental
study in a spatially screened regime, whereas Cunha [19] and Padding
[18] achieved these results from the DNS and SRD using a periodic
box with an aspect ratio of 3. A relatively large value of anisotropy is
achieved due to cubic periodic box and spatially unscreened regime.
Our data show good agreement with the simulation study of Kuusela
et al. [24] and the scaling.

Nicolai [1] obtained these results in a spatially screened
regime, whereas Cunha [19] and Padding [18] performed
DNS and SRD simulations in an elongated simulation box
with an aspect ratio of 3. We have obtained a relatively high
value of the anisotropy at a low volume fraction. This higher
value originates from the difference in vertical and horizontal
relaxation times. Because diffusivity is the product of �V 2

H
and τH, a larger difference in relaxation time leads to a higher
diffusion anisotropy. The diffusion anisotropy can be reduced
by increasing the aspect ratio of the simulation box [33].
An increase in the aspect ratio reduces this difference and
thus the diffusion anisotropy, as exhibited by Cunha [19] and
Padding [18]. In addition, increasing the aspect ratio reduces
the prefactors of Eqs. (15) and (16), especially in the vertical
direction [33], which in turn reduces the diffusion anisotropy.
Hence, diffusion anisotropy is not only dependent on volume
fraction, it also depends on the aspect ratio of the cell. We
obtained an anisotropy of ≈24, whereas Cunha and Padding
found this anisotropy to be ≈10 and 7, respectively, at low
volume fractions. In another simulations study [24], Kuusela
et al. obtained large diffusion coefficients in both directions
using a 2D periodic square simulation box, but the ratio of
diffusion coefficients shows good agreement with our results.
In contrast with the present study, Nicolai [1] obtained an
anisotropy of ≈7 and found no decrease in the anisotropy at
moderate volume fractions, primarily because they obtained
their results in a large container, which is many times greater
than the correlation length. In simulations, the use of such a
large system is impossible due to the large computational cost.
Another possible explanation for the discrepancy between the
simulations and the experimental results is the presence of a
side wall in the experiments, which creates microstructural
inhomogeneities over time [9,54]. In addition, the presence of
polydispersity, even to a small extent, can temper the diffusion.
Ladd [12] obtained a high anisotropy ≈77 at φ = 0.05. This
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large value is attributed to the small system size and the use of
full periodic boundary conditions. Similar to the present study,
Ladd [12] demonstrated that diffusion anisotropy decreases
with increasing volume fraction. The anisotropy of diffusion,
which was ≈77 at φ ≈ 0.05, decreased to ≈39 at φ ≈ 0.107.
We have many experimental and simulation studies to compare
with at low volume fractions, but unfortunately, we could not
find a study which had addressed the scaling of diffusion
anisotropy with respect to volume fraction at moderate or
transition regime.

C. Finite size effects

Theoretical arguments [7] and simulations [12] have long
exhibited the strong dependency of velocity fluctuations on
the system size for a random suspension of particles. In
contrast, experiments [1–3,5] show no such divergence. This
disagreement was solved by Segre et al. [4] who suggested
that the velocity fluctuations increase with the system size only
when the system size is smaller than the correlation length, and
above this correlation length, the simulations and experiments
should be in good agreement. Experimentation has the freedom
to use large system sizes, whereas in simulations, large systems
require enormous resources. Thus, most simulation studies
[10,18,19,21] are affected by the artifacts induced by the
finite system size. To observe the system size dependency
in our results, we defined the spatial correlation function of
the velocity fluctuations, which defines the flow pattern of the
particles as follows:

Cz(r) = 2L3

N2

〈∑
i<j

δVizδVjzδ(r − r ij )

〉
. (20)

We define Cz(z) and Cz(x), with respect to the distance
vector r , in either the vertical r = zδz or horizontal r = xδx

direction.
We plotted the spatial correlation function of the z compo-

nent of the velocity as a function of the distance perpendicular
to gravity in Fig. 8 using three different cubic boxes L/a =16,
32, and 64, at φ = 0.10. Figure 8 shows that the velocity
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FIG. 8. (Color online) Spatial correlation function of the z

component of velocity as a function of the distance perpendicular
to gravity, demonstrating the effects of system size on velocity
fluctuations. All simulations were performed at a volume fraction
of φ ≈ 0.10 and Pe ≈ 80.

fluctuations become long ranged with an increase in the system
size, which is in agreement with the tendencies observed
in similar simulation studies [18,24]. Our simulation results
support the experimental findings of Segre [4] when the system
size is smaller than the correlation length. Therefore, the
particle motion should be affected by the finite system in
our simulations. Figure 8 shows that a large system size is
needed to reproduce the saturation of the velocity fluctuations,
but this requires enormous computational time and resources.
Therefore, most of the computational studies [10,11,14,18,19]
are similarly limited. Systematic experimental [2,4] and
simulation [11,13] studies, however, have revealed that the
effects of finite system size on velocity fluctuations can be
effectively explained using the concept of finite-size scaling
[18]. We believe that there is value in performing critical tests
on the scaling concept. In addition, the experiments [2,4] and
simulations [11,13] addressing the effects of finite system size
on velocity fluctuations have also established that finite system
size may lead to smaller velocity fluctuations [18].

V. CONCLUSION

We studied steady-state sedimentation at a finite Peclet
number using the direct numerical simulations with the
smooth-profile method in a spatially unscreened regime.
The present study focused on the scaling of hydrodynamic
velocity fluctuations and self-diffusivities with respect to
volume fraction and system size. The study also examined
the relative effects of thermal and hydrodynamic fluctuations.
We observed a clear transition from a Brownian-motion-
dominant regime to a hydrodynamic-fluctuations-dominant
regime. Moreover, the hydrodynamic velocity fluctuations in-
creased with increasing volume fraction at low volume fraction
(φ � 0.04) in accordance with theoretical predictions [7,9]
and previous studies [18,19], whereas at moderate volume
fraction (0.06 � φ � 0.12), their behavior was independent
of φ, similar to Nicolai et al. [1] and Climent et al. [25].
We concluded that the amplitudes of the velocity fluctuation
correlations scale with the square of the Stokes velocity at large
Pe, with vertical hydrodynamic velocity fluctuations that are
≈2.5 times larger than the horizontal hydrodynamic velocity
fluctuations at low volume fractions, in good agreement with
other studies [1,18,19,25]. At moderate volume fractions, this
value drops to ≈2. In addition, we tested the scaling relations
for the hydrodynamic velocity fluctuations suggested by Hinch
[31] for different system sizes and volume fractions. We found
that this scaling worked well for low volume fractions and
deviated at moderate volume fraction regimes.

Consistent with the theoretical predictions [7,9], we found
that both the vertical and horizontal velocity fluctuations scale
as (φL/a)1/2 at low volume fractions, saturating with respect
to φ at moderate volume fractions. Similarly, the horizontal
velocity fluctuation relaxation time scales as (L/aφ)1/2 at low
volume fractions, saturating with respect to φ at moderate
volume fractions. This result is in contrast with that of
the vertical relaxation time, which scales as (L/aφ)1/2 for
both regimes. Padding et al. [18] and Kuusela et al. [24]
observed a similar decay behavior for vertical relaxation time.
Furthermore, we found that the difference in the vertical and
horizontal hydrodynamic velocity fluctuation relaxation times
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decreased with increasing volume fraction at moderate volume
fractions.

Based on the scaling of the hydrodynamic velocity fluc-
tuations and their relaxation times, we inferred the scaling
relations of the long-time steady-state self-diffusion coeffi-
cient for both low and moderate volume fraction regimes.
Theoretical arguments [7,9,19] suggest that both the vertical
and horizontal self-diffusion coefficients scale as (L/a)3/2φ1/2

at low volume fractions. Our results have shown the similar
behavior. In contrast to the low volume fraction regimes, the
vertical self-diffusion coefficient scales as (L/a)3/2φ−1/2 at
moderate volume fractions, due to a decrease in the vertical
relaxation time with volume fraction, whereas the horizontal
diffusion coefficient is saturated with respect to φ in this
regime. Our simulation results found good consistency with
the scaling relations. These relations in hydrodynamic velocity
fluctuations, their relaxation times, and the self-diffusion
coefficients are summarized in Tables I and III. The scaling of
the diffusion coefficients allows us to predict the anisotropy
of the vertical and horizontal diffusion. We found that the
diffusion anisotropy increases with increasing Pe, saturating
at high Pe, in accordance with Ref. [18]. This saturated value
remains unchanged at low volume fractions and decreases with
increasing volume fraction at moderate volume fractions. The

decrease in the anisotropy with volume fraction is induced by
the decrease in the difference in magnitudes of the vertical
and horizontal hydrodynamic relaxation times. We obtained a
relatively high anisotropy at low volume fraction. This higher
value is attributed to the use of a cubic periodic box, as
an increase in aspect ratio reduces the diffusion anisotropy
[18,19,33].

The present simulations were performed maintaining
Re < 0.2, so that the inertial effects are negligible. Extensive
simulations are underway to study the effects of inertial
forces at moderate Re values. Additionally, we are attempting
to simulate even higher volume fractions for non-Brownian
particles to study the behavior of velocity fluctuations and
particle diffusion.
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