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The smoothed profile method (SPM) provides an efficient numerical scheme for coupling con-
tinuum fluid dynamics with moving dispersed particles using a smeared interface between the
fluids and the particles. The SPM has been successfully applied to directly simulate several
dynamical problems of colloidal dispersions in incompressible fluids, including those involv-
ing sedimentation, diffusion, coagulation, rheology, and tumbling motion in shear flow as well
as electrophoresis in external electric fields. More recently, the SPM was extended to two im-
portant problems. The first extension simulates colloidal particles in compressible host fluids,
whereas the second extension simulates self-propelled swimming particles. A comprehensive
summary of SPM is provided in this paper.

1 Introduction

Interparticle interactions in colloidal dispersions mainly consist of thermodynamic poten-
tial interactions as well as hydrodynamic interactions. Whereas the former applies to both
static and dynamic situations, the latter only applies to dynamic situations. Although ther-
modynamic interactions in static situations have been studied extensively and are treated
as effective interactions, the nature of dynamic interactions is poorly understood. Be-
cause hydrodynamic interactions are essentially long-range, many-body effects, they are
extremely difficult to study using analytical means alone. Numerical simulations can be
used to investigate the role of hydrodynamic interactions in colloidal dynamics.

Several numerical methods have been developed to simulate the dynamics of colloidal
dispersions. Two of the most well-known methods include Stokesian dynamics1 and the
Eulerian–Lagrangian method2. The former is the most widely used method because of
its proper treatment of hydrodynamic interactions between spherical particles in a New-
tonian fluid at zero Reynolds number. Furthermore, it can be implemented as a O(N)
scheme for N particles by utilizing the fast multi-pole method3. However, it is not easy to
address dense dispersions and dispersions consisting of non-spherical particles by means
of Stokesian dynamics due to the complicated mathematical structures used in Stokesian
dynamics. In contrast, the Eulerian–Lagrangian method is a very natural and sensible ap-
proach for stimulating solid particles. It is possible to apply this method to dispersions
consisting of many particles with different shapes. However, numerical efficiencies arise
from the following concerns: i) the re-construction of irregular meshes according to the
temporal particle position is necessary for every simulation step, and ii) the Navier–Stokes
equation must be solved with boundary conditions imposed on the surfaces of all colloidal
particles. Thus, these computational demands are particularly cumbersome for systems
involving many particles, even if the shapes are all spherical.
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To overcome problems arising from the particle-fluid interface in the Eulerian–
Lagrangian method, we have developed an efficient direct numerical simulation (DNS)
method for colloidal dispersions. This method was named the ”smoothed profile method
(SPM)” because the original sharp interface between the colloids and solvent is replaced
by a smeared out, smoothed interface with a finite thickness4–20. This simple modification
greatly improves the resulting quality of the of numerical computations in comparison with
the original Eulerian–Lagrangian method for the following reasons:

1. Regular fixed Cartesian coordinates can be used for many particle systems by defining
a particle shape instead of providing boundary-fitted coordinates. The particle-fluid
interface has a finite volume (∝ πad−1ξ, with a and d as the particle radius and
system dimension) supported by multiple grid points. Thus, the round particles can
be treated in a fixed Cartesian coordinates without any difficulties. The simulation
scheme is thus free from the mesh re-construction problem that significantly sup-
presses the computational efficiency of the Eulerian–Lagrangian method. In addition,
the simple Cartesian coordinate enables the use of periodic boundary conditions as
well as fast Fourier transformations (FFT).

2. At the particle-fluid interfaces, the velocity component in the direction normal to the
interface of the host fluid must be equal to that of the particle. In the Eulerian–
Lagrangian method, this non-penetration condition is imposed by the Navier–Stokes
equation as the boundary condition defined for the particle-fluid interface. In the SPM,
however, this condition is automatically satisfied by an incompressibility condition on
the entire domain.

3. The computational demands for this method include sensitivity to the number of grid
points (volume of the total system). Nevertheless, because the method is insensitive
to the number of particles, it is suitable for simulating dense colloidal dispersions.

The SPM has been successfully used to directly simulate various dynamical problems
of colloidal dispersion in incompressible fluids, including sedimentation20, diffusion9, 12, 13,
coagulation8, 19, rheology11, 14, 17, tumbling motion in shear flow15, and electrophoresis in
external electric fields7, 10. Several simulation methods similar in spirit to the SPM have
also been proposed in recent publications22–25. A comprehensive summary of SPM is pro-
vided in this study including the recent key extensions for stimulating colloidal particles in
compressible host fluids18 and also for stimulating the self-propelled swimming of parti-
cles21.

2 Colloids in Incompressible Fluids

2.1 Working Equations

The motion of the host fluid is determined by the Navier-Stokes equation with the following
incompressibility condition:

∇ · uf = 0 (1)
ρ (∂t + uf · ∇)uf = ∇ · σ (2)
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where ρ is the total mass density of the fluid, uf is the host fluid velocity field, σ is the
stress tensor

σ = −pI + σ′ (3)

σ′ = η
[
∇uf + (∇uf )

t] (4)

and η is the shear viscosity of the fluid. Consider a mono-disperse system containing N -
spherical particles with a radius a, massMp, and moment of inertia Ip = 2/5Mpa

2I (with
I the unit tensor). The evolution of colloids is described by the Newton-Euler equations28,

Ṙi = Vi Q̇i = Qi skew (Ωi) (5)

MpV̇i = F H
i + F C

i + F ext
i Ip · Ω̇i = NH

i +N ext

where Ri and Vi denote the centre of mass positions and the velocity of the particle
i, respectively, and Qi is the orientation matrixb. Hence, Ωi the angular velocity and
skew (Ωi) is the skew-symmetric angular velocity matrix:

skew(Ωi) =

 0 −Ωzi Ωyi
Ωzi 0 −Ωxi
−Ωyi Ωxi 0

 (6)

The forces on the particles are comprised of hydrodynamic contributions arising from fluid-
particle interactions F H, colloid-colloid interactions due to the core particle potential F C

(which prevents particle overlap), and a possible external field contribution F ext (such as
gravity). Likewise, the torques on the particles can be divided into a hydrodynamic NH

and an external contribution N ext (for simplicity, the particle-particle interactions are as-
sumed to be described by a radial potential). Subsequently, we consider buoyancy-neutral
particles, for which F ext = N ext = 0. Finally, the conservation of momentum between
the fluid and the particles implies the following hydrodynamic force and torque on the i-th
particle:

F H
i =

∫
dSi · σ (7)

NH
i =

∫
(x−Ri)× (dS i · σ) (8)

where
∫

dSi indicates an integral over the surface of the particle. In addition, thermal
fluctuations can be introduced by adding a random stress tensor sin Eq. 3, that satisfies the
fluctuation-dissipation relation:26

〈sik(x, t)sjl(x
′, t′)〉 = 2kBTη(δijδkl + δilδkj)δ(x− x′)δ(t− t′), (9)

where kB is the Boltzmann constant, T is the temperature. Alternatively, it is also pos-
sible to introduce thermal fluctuations by adding Langevin random forces and torque to
Eq. 59, 11–13.

bFor numerical stability, we use quaternion instead of rotation matrices to represent the rigid body dynamics of
the particles.

13



2.2 Simulation Procedure for Incompressible Fluids

We now present the computational algorithm used to simulate the motion of spherical
particles using the SPM. We require that all field variables are defined over the entire com-
putational domain (fluid + particle). The concentration field for the colloids is described
as follows:

φ(x, t) =

N∑
i=1

φi(x, t), (10)

where φi ∈ [0, 1] is the smooth profile field of particle i. This field is defined as unity within
the particle domain, as zero in the fluid domain, and as a smooth interpolation between the
two extremes within the interface region. Several possible mathematical forms exist for
φi(x), however, we adopted the following definition of φi:

φi(x) = g(|x−Ri|), (11)

g(x) =
h((a+ ξ/2)− x)

h((a+ ξ/2)− x) + h(x− (a− ξ/2))
, (12)

h(x) =

{
exp

(
−∆2/x2

)
x ≥ 0,

0 x < 0.
(13)

where a, ξ, and ∆ are the radius of the particle, the interfacial thickness, and lattice spacing,
respectively. The particle velocity field is defined in a similar fashion:

φup(x, t) =

N∑
i=1

{Vi(t) + Ωi(t)× ri(t)}φi(x, t) (14)

with ri = x − Ri, which allows one to define the total fluid velocity field using the
following expression:

u(x, t) ≡ (1− φ)uf + φup (15)

where the incompressibility condition is satisfied over the entire domain ∇ · u = 0. The
evolution equation for u is then derived assuming momentum-conservation between fluid
and particles6, 10

ρ (∂t + u · ∇)u = ∇ · σ + ρφfp (16)

where φfp represents the force density field needed to maintain rigidity constraints on the
particle velocity field.

We use a fractional step approach to update the total velocity field. Let un be the field
at time tn = nh (h is the time interval).

i) We first solve for advection and hydrodynamic viscous stress terms, and we then
propagate the particle positions (orientations) using the current particle velocities,
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which affords the following relation:

u∗ = un +

∫ tn+h

tn

ds∇ ·
[

1

ρ
(−p∗I + σ′)− uu

]
(17)

Rn+1
i = Rn

i +

∫ tn+h

tn

dsVi (18)

Qn+1
i = Qn

i +

∫ tn+h

tn

dsQiskew (Ωi) (19)

where the pressure term p∗ in Eq. 17 is determined by the incompressibility condition
∇ · u∗ = 0. The remaining updating procedure imposes a rigidity constraint on the
velocity field.

ii) The hydrodynamic force and torque exerted by the fluid on the colloids is determined
by assuming momentum conservation. The time integrated hydrodynamic force and
torque over a period h are equal to the momentum exchange over the particle domain[∫ tn+h

tn

dsF H
i

]
=

∫
dx ρφn+1

i

(
u∗ − unp

)
(20)[∫ tn+h

tn

dsNH
i

]
=

∫
dx
[
rn+1
i × ρφn+1

i

(
u∗ − unp

)]
(21)

Based on this and other forces acting on the colloids, the particles velocities are up-
dated as follows:

V n+1
i = V n

i +M−1
p

[∫ tn+h

tn

dsF H
i

]
+M−1

p

[∫ tn+h

tn

ds
(
F C
i + F ext

i

)]
(22)

Ωn+1
i = Ωn

i + I−1
p ·

[∫ tn+h

tn

dsNH
i

]
+ I−1

p ·

[∫ tn+h

tn

dsN ext
i

]
(23)

iii) Finally, the resulting particle velocity field φn+1un+1
p is enforced on the total velocity

field as follows:

un+1 = u∗ +

[∫ tn+h

tn

ds φfp

]
(24)[∫ tn+h

tn

ds φfp

]
= φn+1

(
un+1
p − u∗

)
− h

ρ
∇pp (25)

wherein the pressure is due to the rigidity constraint obtained from the incompress-
ibility condition∇·un+1 = 0. The total pressure field is thus obtained as p = p∗+pp.

The above procedure defines the consistent time-propagation, {un;Rn
i ,Q

n
i ,Ω

n
i } →

{un+1;Rn+1
i ,Qn+1

i ,Ωn+1
i }, to simulate colloidal particles in incompressible fluids.
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3 Colloids in Compressible Fluids

3.1 Working Equations

The hydrodynamic equations consist of three conservation laws concerning mass, momen-
tum, and energy. The conservation equations of mass and momentum for incompressible
fluids are described by the following:

∂ρ

∂t
+∇ ·m = 0, (26)

∂m

∂t
+∇ · (mu) = ∇ · σ + ρφfp, (27)

where m(r, t) = ρ(r, t)u(x, t) is the momentum density field. We consider a compress-
ible Newtonian fluid, and the stress tensor is described as follows:

σ = −pI + η[∇u+ (∇u)t] +

(
ηv −

2

3
η

)
(∇ · u)I, (28)

where p(r, t) is the pressure, η is the shear viscosity, and ηv is the bulk viscosity. A body
force ρφfp is also added to satisfy the rigidity of the particles. Additionally, we assume a
barotropic fluid described by p = p(ρ), with a pressure gradient that is proportional to the
density:

∇p = c2∇ρ, (29)

where c is the speed of sound in the fluid. Eqs. 26-29 are closed to variables ρ, m, and p;
therefore, energy conservation does not need to be considered for barotropic fluids.

The motion of the dispersed particles is governed by Newton-Euler equations of motion
Eq. 5. The effect of thermal fluctuations on the particles dynamics is important when the
particle size is on the order of a micrometer or smaller. Fluctuations were introduced using
a random stress tensor s, which is added to the stress tensor Eq. 28. The random stress is
a stochastic variable satisfying the fluctuation-dissipation relation26:

〈sij(r, t)skl(r′, t′)〉 = 2kBTηijklδ(r
′ − r)δ(t′ − t), (30)

and

ηijkl = η(δikδjl + δilδjk) +

(
ηv −

2

3
η

)
δijδkl. (31)

Brownian motion of the dispersed particles is induced by the random stresses acting on
the fluid. Thermal fluctuations can be introduced using the Langevin approach, wherein
random forces are exerted on the particles9, 11–13. However, this approach does not accu-
rately represent the short-time dynamics of the system because the autocorrelation time
of the hydrodynamic force acting on the particles is neglected. Therefore, the fluctuating
hydrodynamics approach is more appropriate for investigating dynamics at a time scale of
sound propagation.
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3.2 Simulation Procedure for Compressible Fluids

In this section, the time-discretized evolution of the equations is derived for colloidal dis-
persions in compressible fluids. The time evolution of the fluid is determined using the
following steps:

i) The mass and momentum density changes associated with sound propagation are cal-
culated using the following equations:

ρn+1 = ρn −
∫ tn+h

tn

ds∇ ·m, (32)

m∗ = mn − c2
∫ tn+h

tn

ds∇ρ. (33)

When we assume a periodic boundary condition and use the Fourier spectral method,
a semi-implicit scheme becomes feasible27. This situation eliminates restrictions on
time increments with a small compressibility factor ε.

ii) The time evolution of the advection and viscous diffusion terms are calculated using
the following equations:

m∗∗ = m∗ +

∫ tn+h

tn

ds∇ · (σ′ −mu), (34)

where σ′ is the dissipative stress defined in Eq. 3.

iii) In concert with the advection of the particle domain, the position (orientation) of each
dispersed particle evolves according to the following equations:

Rn+1
i = Rn

i +

∫ tn+h

tn

dsVi (35)

Qn+1
i = Qn

i +

∫ tn+h

tn

dsQiskew (Ωi) . (36)

iv) The hydrodynamic force and torque are derived by considering the conservation of
momentum. The time-integrated hydrodynamic force and torque are computed using
the following equations:∫ tn+h

tn

dsFHi =

∫
dxφn+1

i (m∗∗ − ρn+1unp ), (37)

∫ tn+h

tn

dsNH
i =

∫
dx [(r −Rn+1

i )× φn+1
i (m∗∗ − ρn+1snp )]. (38)

With these and other forces acting on the particles, the translational and rotational
velocities of each dispersed particle evolve according to the following equations:

V n+1
i = V n

i +M−1
p

∫ tn+h

tn

ds (FHi + FCi ), (39)

Ωn+1
i = Ωn

i + I−1
p ·

∫ tn+h

tn

dsNH
i . (40)
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v) The updated velocity of the particle region is imposed on the velocity field as the
volume force ρφfp.

mn+1 = m∗∗ +

∫ tn+h

tn

ds ρφfp, (41)

∫ tn+h

tn

ds ρφfp = φn+1(ρn+1un+1
p −m∗∗). (42)

In the case of an incompressible fluid, the pressure is spontaneously determined by
the solenoid condition of the velocity field. In contrast, in this case, the pressure and
mass density variations are independent of the velocity field.

The above procedure defines the consistent time-propagation, {ρn,mn;Rn
i ,Q

n
i ,Ω

n
i } →

{ρn+1,mn+1;Rn+1
i ,Qn+1

i ,Ωn+1
i }, to simulate colloidal particles in compressible fluids.

4 Self-Propelled Particles

4.1 Squirmer Model

We consider a simple model of self-propelled spherical swimmers, originally introduced
by Lighthill29 and later extended by Blake30, which move due to a self-generated surface-
tangential velocity us. This specific mechanism was proposed as a model for an ideal
ciliate particle, in which the synchronized beating of the cilia at the surface gives rise to
net motion in the absence of any external fields. If one assumes that the displacements of
this cilia envelope are purely tangential, then the effective (time-averaged) slip velocity for
these squirmers is described by the following equation30:

us(r̂) =

∞∑
n=1

2

n (n+ 1)
Bn (ê · r̂r̂ − ê)P ′n (ê · r̂) (43)

where ê is the squirmer’s fixed swimming axis (i.e., we consider that each squirmer carries
with it a fixed coordinate system that determines its preferred swimming direction at each
instant), r̂ is a unit vector from the particle centre to a point on the surface, P ′n is the deriva-
tive of the n-th order Legendre polynomial, and Bn is the amplitude of the corresponding
mode.

When all squirming modes higher than three are neglected, Bn = 0 (n ≥ 3), the
following simple expression for the surface tangential velocity as a function of polar angle
θ = cos−1 (r̂ · ê), is obtained:

us(θ) = B1

(
sin θ +

α

2
sin 2θ

)
(44)

where α = B2/B1 determines whether the swimmer is a pusher (α < 0) or a puller
(α > 0). A schematic representation of the flow profile generated by these two types
of swimmers is provided in Fig. 1. An example of the former include spermatozoa and
most bacteria, whereas the latter includes unicellular algae Chlamydomonas. Although the
squirmer model we adopt does not include a detailed propulsion mechanism, it is capable
of distinguishing between pushers/pullers and provides an adequate approximation for the
far-field flow profile generated by these swimmers.
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Figure 1. Schematic representation of the flow profiles generated by a pusher (left) and a puller (right). In both
cases, the particle’s swimming direction is towards the top of the page.

For Newtonian fluids, which is the only case considered here, the swimming speed U
of the squirmer is determined uniquely by the first mode B1, irrespective of the size of
the particle, as U = 2/3B1, while the second mode gives the strength of the stresslet31, 32.
In the Stokes regime, the velocity field generated by a single such squirmer was solved
analytically by Ishikawa et al.31, providing the following expression in the laboratory frame
(fluid at rest far away from the particle):

u(r) = B1
a2

r2

[
a

r

(
2

3
ê+ sin θ θ̂

)
+
α

2

{(
a2

r2
− 1

)(
3 cos2 θ − 1

)
r̂ +

a2

r2
sin 2θ θ̂

}]
(45)

where a is the radius of the particle. Notice that for neutral swimmers (α = 0), the velocity
field decays as r−3, whereas for pushers/pullers (α 6= 0), the velocity field decays as r−2.
In contrast, the velocity field for a sedimenting particle (or a particle experiencing a net
body force) decays as r−1 33. This observation will have important consequences on the
hydrodynamic interactions describing suspensions of swimmers.

4.2 Simulation Procedure for Squirmers

We now present the computational algorithm used to simulate the motion of spherical
particles, with a given surface tangential slip velocity us using the SPM. The evolution
equation for u is then derived by assuming momentum-conservation between the fluid and
particles6, 10

ρ (∂t + u · ∇)u = ∇ · σ + ρφfp + ρfsq (46)

where φfp represents the force density field needed to maintain the rigidity constraint
on the particle velocity field and fsq is the force density field generated by the squirming
motion of the particles. The motion of the dispersed particles is governed by Newton-Euler
equations of motion Eq. 5.

We use the fractional step approach to update the total velocity field.
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i) We first solve for the advection and hydrodynamic viscous stress terms, and we then
propagate the particle positions (orientations) using the current particle velocities.
This operation yields the following results:

u∗ = un +

∫ tn+h

tn

ds∇ ·
[

1

ρ
(−p∗I + σ′)− uu

]
(47)

Rn+1
i = Rn

i +

∫ tn+h

tn

dsVi (48)

Qn+1
i = Qn

i +

∫ tn+h

tn

dsQiskew (Ωi) (49)

where the pressure term p∗ in Eq. 47 is determined by the incompressibility condition
∇ · u∗ = 0. The remaining updating procedure applies to the slip condition at the
particle boundary as well as the rigidity constraint on the velocity field.

ii) We now consider the momentum change needed to maintain the slip velocity at the
surface of each of the squirmers, where the slip profile us is imposed with respect to
the particle velocities {V ′i ; Ω′i}, using the previously updated positions and orienta-
tions orientations {Rn+1

i ;Qn+1
i }. We note that at this point we do not yet know the

correct updated particle velocities {V n+1
i ; Ωn+1

i }, which are the values that should
be used when enforcing the surface slip profileV ′i = V n+1

i (Ω′i = Ωn+1
i ). Therefore,

we adopt an iterative solution, and as an initial guess, we use the particle velocities at
the previous time step, i.e., V ′i = V n

i (Ω′i = Ωn
i ). The updated total velocity field is

now obtained using the following:

u∗∗ = u∗ +

[∫ tn+h

tn

dsfsq

]
(50)[∫ tn+h

tn

dsfsq

]
= u∗ +

N∑
i=1

ϕi (V ′i + Ω′i × ri + usi − u∗)

+

N∑
i=1

φi (δVi + δΩi × ri)−
h

ρ
∇psq (51)

The second term on the right hand side of Eq. 51 imposes a slip velocity profile us at
the surface of each of the squirmers where ϕi ∝ (1 − φi) |∇φi| is a smooth surface
profile function that is non-zero only within the interface domain of the squirmer (nor-
malized to have a maximum value of one), and zero everywhere else (the red arrows
in Fig. 2). The third term adds a counter-flow entirely within the particle domain, such
that local momentum conservation is preserved (the blue arrows in Fig. 2). Assuming
rigid-body motion, with velocities δVi and δΩi, this requires∫

dxφi (δVi + δΩi × ri) = −
∫

dxϕi (V ′i + Ω′i × ri + usi − u∗) (52)∫
dxri × φi (δVi + δΩi × ri) = −

∫
dxri × ϕi (V ′i + Ω′i × ri + usi − u∗)

(53)
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tangential slip
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aa
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Figure 2. Schematic representation of the updating scheme used to enforce the slip boundary condition at the
surface of the squirmers. Each particle is considered to exert a force on the fluid at the surface, in order to maintain
the specified flow profile us (red arrows) for the squirming motion. To ensure local momentum conservation, a
counter-flow is added within the particle domain (blue arrows).

from which we can easily obtain the counter-flow terms δVi (δΩi) from the particle
velocities V ′i (Ω′i). A schematic representation of the procedure used to enforce the
specific slip-boundary conditions for our model squirmers is shown in Fig. 2. Finally,
the pressure term due to the squirming motion psq is obtained from the incompress-
ibility condition ∇ · u∗∗ = 0. At this point, the momentum conservation relation is
solved for the total velocity field.

iii) The hydrodynamic force and torque exerted by the fluid on the colloids (which in-
cludes all contributions to the squirming motion) is again derived by assuming mo-
mentum conservation. The time integrated hydrodynamic force and torque for a pe-
riod h are equal to the momentum exchange over the particle domain:[∫ tn+h

tn

ds
(
F H
i + F sq

i

)]
=

∫
dx ρφn+1

i

(
u∗∗ − unp

)
(54)[∫ tn+h

tn

ds
(
NH
i +N sq

i

)]
=

∫
dx
[
rn+1
i × ρφn+1

i

(
u∗∗ − unp

)]
(55)

From this and any other forces on the colloids, the particles velocities are updated
according to the following equations:

V n+1
i = V n

i +M−1
p

[∫ tn+h

tn

ds
(
F H
i + F sq

i

)]
+M−1

p

[∫ tn+h

tn

ds
(
F C
i + F ext

i

)]
(56)

Ωn+1
i = Ωn

i + I−1
p ·

[∫ tn+h

tn

ds
(
NH
i +N sq

i

)]
+ I−1

p ·

[∫ tn+h

tn

dsN ext
i

]
(57)

We recall that we have imposed the slip profileus with respect to the primed velocities
{V ′i ; Ω′i}, which need not be equal to the final velocities of the particle at step n+ 1.
To maintain consistency, we iterate over Eqs. 50-57 until a convergence of velocities
is achieved.
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iv) Finally, the resulting particle velocity field φn+1un+1
p is enforced over the total ve-

locity field using the following relations:

un+1 = u∗∗ +

[∫ tn+h

tn

ds φfp

]
(58)[∫ tn+h

tn

ds φfp

]
= φn+1

(
un+1
p − u∗∗

)
− h

ρ
∇pp (59)

wherein the pressure due to the rigidity constraint obtained from the incompressibility
condition∇ · un+1 = 0. The total pressure field is then given by p = p∗ + pp + psq.

The above procedure defines the consistent time-propagation, {un;Rn
i ,Q

n
i ,Ω

n
i } →

{un+1;Rn+1
i ,Qn+1

i ,Ωn+1
i }, to simulate self-propelled squirmers in incompressible flu-

ids.
We are aware of two alternative simulation methods that aim to describe these squirmer

suspensions at the same level of description, the first was developed by Ramachandran et
al.35 using a Lattice Boltzmann model, and the second was originally introduced by Down-
ton and Stark36 within a multi-particle collision dynamics framework, and later extended
by Götze and Gompper37 to recover the correct rotational dynamics. For the moment
though, these DNS approaches have not been extensively used to study these types of
swimming systems; the most popular methods, which still account for the hydrodynamic
interactions, have usually been based on Stokesian Dynamics31, 34, and are thus limited to
Newtonian fluids in the Stokes regime.

5 Concluding Remarks

A new computational method named the SPM has been developed to simulate particle
dispersion in fluids4–21. Utilizing a smoothed profile for particle-fluid boundaries, hydro-
dynamic interactions in many particle dispersions can be fully taken into account, yielding
both accurate and efficient results. In principle, the SPM can be easily applied to systems
consisting of many particles with different shapes. The reliability and the performance of
the method was confirmed to be satisfactory by several critical tests4–22.

Recently, we extended the SPM to particle dispersions in compressible fluids18. The
validity of the method was confirmed by calculating the velocity relaxation function of
a single spherical particle in a compressible fluid21. The effect of compressibility on the
velocity relaxation was also observed, revealing a two-stage relaxation process for low-
compressibility fluids and a backtracking motion for high-compressibility fluids. A simu-
lation of the motion of a single spherical particle in a fluctuating fluid was also performed.
The calculated velocity autocorrelation function of the particle showed good agreement
with the analytical solution of the relaxation function, thereby confirming the validity of
the fluctuation-dissipation theorem without any fitting parameters.

We have also shown that SPM can be extended to systems with self-propelled swim-
ming particles, making it possible to describe the actions of squirmers (active swimmers
that move due to self-generated surface tangential velocities)21. The validity of the method
was confirmed by comparing the simulation data with the exact results for the case of a
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single swimmer, wherein the correct swimming speed is recovered and it is possible to ac-
curately reproduce the fluid flow generated by the squirming motion. The advantage of the
SPM for swimming particles in comparison with Stokesian Dynamics (which have been
successfully and extensively used to study these systems)31, 34 is its applicability to particle
dispersions in complex fluids. This is relevant in the case of swimming micro-organisms
as the role of nutrients and the presence of a non-Newtonian host fluid must be considered
when making comparisons with experimental data.
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