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Effect of hydrodynamic interactions on rapid Brownian coagulation of colloidal dispersions
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The rate of rapid Brownian coagulation is investigated for dispersions of spherical particles with particle volume
fractions ranging from φp = 0.003 to 0.1 by the direct numerical simulation method. This method explicitly
considers hydrodynamic interactions (HIs) between particles by simultaneously solving for the motions of the
dispersed particles and the host fluid. In the dilute limit, the rate of rapid Brownian coagulation decreases to
approximately 0.3–0.5 times the theoretical Smoluchowski rate. We compare this result with results of previously
reported experiments and theoretical predictions and find a strong correlation between them. This demonstrates
that HIs between particles significantly reduce the coagulation rate. Moreover, the volume fraction dependence
of the coagulation rate indicates that the coagulation rate increases with increasing volume fraction. At high
particle volume fractions, the initial coagulation stage is affected by heterogeneous coagulation process before
the steady state is reached.
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I. INTRODUCTION

Since Smoluchowski developed his theory of the Brownian
coagulation process in colloidal dispersions based on popula-
tion balance equations of coagulates and coagulation kinetics
[1], many theoretical, experimental, and simulation studies
have investigated the validity of this theory. A major deficiency
of the Smoluchowski theory is that it predicts a coagulation rate
that is approximately twice as large as the actual coagulation
rate of colloidal dispersions [2–6]. This discrepancy has been
mainly attributed to the theory’s failure to consider interparti-
cle interactions. Thus, a correction factor for the coagulation
rate that considers interparticle interactions (hydrodynamic
lubrication, Derjaguin-Landau-Verwey-Overbeek interaction
[7,8], etc.) has been proposed [9–11]. Many experimental
examinations of this correction have been conducted [2–6,12].
It has been suggested that the lower observed aggregation rate
is due mostly to hydrodynamic lubrication forces between
particles that hinder two particles approaching each other.
However, these experimental examinations depend on the
proposed correction factor itself. Consequently, evaluation of
the hydrodynamic term in the correction factor is replaced by
evaluation of other interparticle interactions, such as Van der
Waals attractions. Thus, additional direct evaluations of these
hydrodynamic effects would be valuable.

In the Smoluchowski formalism, particles are assumed to be
spherical and the coagulation process is limited to simple two-
body collisions between coagulates of the same size. These
assumptions are only valid in the early stages of coagulation in
dilute dispersions. In addition to the coagulation process itself,
the formation of fractal structures in the coagulate clusters
significantly affects the coagulation rate in the later stages of
coagulation. An increase in the coagulation rate in the later
stages of coagulation is observed experimentally. A theory
of coagulation kinetics that is applicable to the later stages
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of coagulation has been proposed. This model considers the
steric effect of coagulation on the coagulation rate [13,14].

The coagulation rate is known to be enhanced in the very
early stages of coagulation in which the spatial distribution
of particles has not yet reached a steady state [1,15]. As
the volume fraction of dispersed particles increases, the
characteristic coagulation time (i.e., the time for the initial
particle number to be halved) becomes shorter. At a certain
volume fraction, the coagulation time becomes comparable
to the transition period in which the effects of the unsteady
state are significant. Therefore, coagulation times at higher
volume fractions are greatly affected by the effects of the
unsteady state. An increase in the coagulation rate at high
particle volume fractions has been experimentally observed
[3]. However, a detailed mechanism for this enhancement in
the coagulation rate has yet to be elucidated.

Computer simulations are potentially superior to physical
experiments for investigating these problems since simula-
tions avoid difficulties such as preparing an initial dispersed
particle distribution and observing aggregate forms at high
concentrations. They can thus provide essential insights that
can be used to evaluate proposed theories. Several simulations
of colloidal coagulation have been reported, including some
that employ Brownian dynamics (BD) and Langevin dynamics
(LD) [14,16–19]. In these simulations, the coagulation rate
has been observed to increase with increasing particle volume
fraction [14,16–18]. Lattuada recently proposed a correction to
the Smoluchowski equation for high volume fractions by using
a result derived from trapping theory for the diffusion-limited
reaction of chemical species. His theory and results appear to
be consistent when assessed by a BD simulation [19].

The BD and LD simulation methods are effective for
calculations of large systems because they have low com-
putational costs. However, their handling of hydrodynamic
interactions (HIs), such as lubrication forces, that act between
particles is inadequate and may give rise to significant
discrepancies between calculation and experimental results.
This is especially true for colloidal particles dispersed in
viscous liquids, such as water, solvents, or resins. In particular,
simulations performed without considering HIs (such as the
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BD method) yield coagulation rates in the dilute limit that are
very similar to the theoretical value given by the Smoluchowski
theory, which does not consider HIs. Although BD simulations
with average hydrodynamic corrections have recently been
conducted, a reduction in the coagulation rate such as that
found in experiments at low volume fractions was not
observed [18].

Brady and Bossis developed the Stokesian dynamics (SD)
simulation method that correctly incorporates hydrodynamic
effects in the low Re limit [20]. The SD method represents
short-range lubrication forces and long-range hydrodynamic
forces by the sum of two-body analytic interactions. This
method has been adapted to the rheology of colloidal
dispersions and sedimentation phenomena in which fluid
hydrodynamics significantly affect particle dynamics [20,21].
Although the SD method has provided much valuable informa-
tion regarding these phenomena, the assumption that HIs can
be treated as the sum of two-body interactions fails to consider
many-body HIs, which may be important in coagulation
of high volume fractions [22,23]. Consequently, to gain a
complete understanding of these coagulation processes, it is
desirable to consider many-body HIs.

In recent years, several numerical methods have been
developed that accurately simulate dispersion in a variety of
situations, including those described above [22,24–27]. These
dispersion modeling techniques are all based on the same ap-
proach that involves determining fluid motion simultaneously
with particle motion. We refer to this approach as the direct
numerical simulation (DNS) approach. This approach enables
us to accurately consider full time-dependent many-body HIs.
In this study, we apply a direct numerical scheme based on
the smoothed profile (SP) method [24] to a monodisperse
dispersion of neutrally buoyant attractive Brownian particles in
a stationary fluid. In SP method, the Navier-Stokes equation for
the fluid motion is discretized on a regular grid and Newton’s
equations for particle motion are solved simultaneously with
fluid motion.

In the present study, we examine the rate of rapid Brownian
coagulation for a low particle volume fraction φp = 0.003 and
for a relatively high volume fraction φp = 0.1 using the DNS
method, which accurately accounts for HIs. Specifically, we
focus on whether our simulation gives a lower coagulation rate
from that predicted by the Smoluchowski theory. Because our
simulation explicitly considers full many-body HIs, successful
reproduction of the reduced coagulation rate would imply that
the reduction is due to hydrodynamic effects. In addition,
the volume fraction dependence of the coagulation rate is
investigated. In these analyses, the focus is mainly on early
stage of coagulations. However, at high particle volume
fractions, our results show deviations from the early time
behavior. Some interpretations to this effect will be given as
well.

II. KINETIC THEORY OF RAPID COAGULATION

In general, the kinetic equation of Brownian coagulation is
given by

dnk

dt
= 1

2

i=k−1∑
i=1,i+j=k

β(i,j )ninj −
∞∑
i=1

β(k,i)nkni, (1)

where nk is the concentration of particles with size k at
time t and β(i,j ) is the collision frequency factor between
particles with sizes i and j . Since the collision frequency factor
depends on the individual properties of a particular motion
and on particle interactions, its functional form is generally
unknown except for some ideal cases. Once the collision
frequency factors and initial conditions have been determined,
it is possible to obtain information about the coagulation rates
and cluster size distributions during coagulation by solving
the simultaneous equations Eq. (1) for each cluster size.
Smoluchowski considered particle collisions in terms of the
relative diffusion of one particle with respect to another and
showed that a simple form of the collision frequency factor
in the early stages of coagulation of initially monodisperse
suspensions could be determined by solving the diffusion
equation in spherical coordinates [1]. The particle spatial
distribution of i-fold clusters around j -fold clusters ni(r,t)
and the collision frequency factor β(i,j ) are expressed by

ni(r,t) = ni(t)

(
1 − Rij

r
+ 2Rij√

πr

∫ r−Rij√
4Dij t

0
e−ξ 2

dξ

)
, (2)

β(i,j )ni(t) = 4πR2
ijDij

(
∂ni

∂r

)
r=Rij

(3)

= 4πRijDijni(t)

(
1 + Rij√

πDij t

)
, (4)

where r is the distance between the two clusters and ni(t) =
ni(∞,t),Rij = Rc,i + Rc,j ,Dij = Di + Dj , where Rc,i , Di

are the collision radius and the translational diffusion constant
of the cluster with size i, respectively. The last term in Eq. (4)
represents the unsteady effect that increases the coagulation
rate during the initial stages of coagulation. This effect
reflects the unsteady state of the particle spatial distribution
from the beginning of coagulation to the establishment of
a steady-state particle distribution. The time dependence of
the particle spatial distribution expressed by Eq. (2) is shown
in Fig. 1. Equation (2) assumes a spatially uniform particle
distribution as the initial condition. As coagulation starts and
proceeds, i-fold clusters diffuse toward j -fold clusters, leading
to collisions and a subsequent reduction in the density near
j -fold clusters. Accordingly, ∼R2

ij /Dij , the gradient of particle
distribution at r/Rij = 1 is often steep and the particle flux
becomes large. At later times, the area with reduced density
extends to larger interparticle distances. Ultimately, little fur-
ther change in the particle distribution occurs and a steady-state
particle distribution, ni(r,t) = ni(t)(1 − Rij/r), is established.
In our case, the initial particle distribution is not uniform,
particularly at high volume fractions. In addition, interparticle
interactions due to HIs and direct interparticle interactions
may alter the time dependence of the particle distribution.
The unsteady effects on the coagulation rate are expected to
be more complicated than was proposed by Smoluchowski.
These complex initial conditions or boundary conditions in
the diffusion equation have been studied, especially in the
field of the kinetics of chemical reactions in solution [28].

Assuming that the Stokes-Einstein relation, Di =
kBT/6πμRH,i , and the condition in the early stages of
coagulation, Rij/2 = Rc,i = Rc,j = RH,i = RH,j , both hold
and a steady-state particle distribution is established (i.e.,
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FIG. 1. The time dependence of particle spatial distribution is
expressed by Eq. (2). Vertical and horizontal axes are normalized
by ni(t) and Rij , respectively. Particle distributions at t/t∗ =
0,0.001,0.01,0.1,1,10 are shown, where t∗ = R2

ij /Dij . The steady-
state particle distribution at t/t∗ � 1 is also plotted.

t � R2
ij /Dij ), Eq. (4) can be simplified as β(i,j ) = 2K0 =

8kBT/3μ. Here, kB is the Boltzmann constant and T is the
temperature. Furthermore, μ is the viscosity of the fluid, RH,i

is the hydrodynamic radius of a cluster with size i, and K0 =
4kBT/3μ is the so-called Smoluchowski rate constant for rapid
Brownian coagulation. Smoluchowski solved Eq. (1) for the
early stages of the coagulation of an initially monodisperse,
monomer suspensions. The total particle concentration, Nt ,
and the concentration of particles of each cluster size, ni , are
respectively given by

1

Nt (t)
− 1

N0
= Kt = t

N0tc
, (5)

ni(t) = N0

(
t

tc

)i−1/(
1 + t

tc

)i+1

, (6)

where N0 is the initial total particle concentration and the
coefficient K on the right-hand side of Eq. (5) represents the
coagulation rate in terms of the total number concentration.
The index i � 1 in Eq. (6) represents the cluster size (number
of particles in the cluster). For the ideal conditions proposed
by Smoluchowski, K = K0. The coagulation time tc is defined
as the time for the total particle concentration to decrease to
half the initial particle concentration, Nt (tc) = N0/2. The time
constant tc represents a useful time scale for identifying the
early stages of coagulation.

III. SIMULATION METHOD

We use a direct numerical scheme based on the SP
method to consider the hydrodynamic many-body interaction
between particles [24,29]. This method has been adapted to
rheological studies and studies of the gelation of colloidal
particle dispersions; it has been confirmed reasonably well
[23,30]. In the present study, we consider the rapid Brownian

coagulation process for a system of monodisperse spherical
particles in which the particles interact with one another
through short-range attractive interactions.

We consider a monodisperse dispersion of Np spherical
particles with diameter σ = 2a in a Newtonian host fluid,
where a is the radius of a particle. The particles interact via a
modified 200:100 Lennard-Jones potential as

VLJ(r) = 4ε[(σ/r)200 − (σ/r)100], (7)

where r is the distance between two particles and ε is
the interaction strength. The large power index in Eq. (7)
produces a short interaction range, corresponding to the rapid
coagulation of sticky particles. In this study, the value of ε is
a fixed at 7.03kBT . This attractive potential strength is higher
than the thermal fluctuation strength kBT and is sufficiently
high to prevent coagulated particles from reversibly dispersing
through thermal fluctuations.

The time evolution of particle i with mass Mi = πσ 3ρp/6
and moment of inertia Ii is governed by Newton’s equations
of motion as

Mi V̇ i = FH
i + FC

i + GV
i , Ṙi = V i , (8)

I i · �̇i = NH
i + G


i , (9)

where ρp is the density of the particle, Ri is the position of
the particle i, V i is the translational velocity of the particle,
and �i is the rotational velocity of the particle. FH

i ,NH
i are the

hydrodynamic forces and torques exerted by the fluid on each
particle. FC

i is the interparticle force arising from the potential
of Eq. (7). GV

i ,G

i are respectively random forces and torques

due to thermal fluctuations. These random fluctuations are
assumed to be Markovian and determine the temperature T .
The procedure for determining the temperature is described
in [31]. In the SP method, the velocity and pressure fields,
v(x,t) and p(x,t), are defined according to three-dimensional
Cartesian grids that consist of fluid and particle domains.
Each domain in the grids is distinguished by a smoothed
function φ(x,t), which is 1 in the particle domains and 0
in the fluid domains. These domains are separated by a thin
interfacial domain of thickness ξ . The time evolution of the
velocity field is governed by the Navier-Stokes equation with
the incompressibility condition ∇ · v = 0 given by

ρf (∂tv + v · ∇v) = −∇p + μ∇2v + ρfφ f p, (10)

where ρf is the density of the fluid and φ f p is the body force
that ensures the rigidity of the particles and the appropriate
nonslip boundary conditions at the fluid/particle interface. This
phenomenon is explained in more detail elsewhere [24,29].

The unit of length in the lattice spacing is �; the other
fundamental units are μ and ρf . Similarly, the unit of time
is τ = ρf�

2/μ and the unit of energy is ε0 = �μ2/ρf .
Unless otherwise stated, we set � = 1, τ = 1, μ = 1, ρf =
1, ρp = 1, a = 4, σ = 8, ξ = 2, and the Lennard-Jones time
unit τM = [(Miσ

2)/ε]1/2 ≈ 131. Assuming dispersions of
neutrally buoyant particles of radius 1 μm in water at room
temperature, our unit length � and time τ correspond
to 0.25 μm and 0.0625 μs. The second-order Runge-Kutta
scheme is used to integrate Newton’s equations. The Navier-
Stokes equation is discretized by a Fourier spectral scheme
in space and by a second-order Runge-Kutta scheme in time.
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The discretized time step is h = 0.074 81. Although this value
is chosen from the stability condition of the Navier-Stokes
equation, it is suitable for the particle equations because h

is smaller than the period of the particle’s vibration in the
potential well τV = 2π [Mi/V̈LJ(21/100σ )]1/2 ≈ 11.7. Thus, a
sufficiently short time step relative to the typical time scale for
particle’s motions is adopted.

IV. RESULTS AND DISCUSSION

The simulations were performed in a three-dimensional
cubic box whose side length is L with periodic
boundary conditions. All simulations assumed a con-
stant volume system L = 256, where the number of
particles was Np = 187,281,375,625,938,1877,3754, and
6258. These conditions respectively correspond to φp =
0.003,0.0045,0.006,0.01,0.015,0.03,0.06, and 0.1 where
φp = πσ 3Np/6L3. For spherical particles, a = 4 and ξ = 2.
The thermal fluctuation forces on the particles are controlled
for the temperature kBT/ε0 = 5.97. The particle spatial
distribution is initially random. To increase the statistical
significance, five simulations were conducted for different
random particle distributions. The total number of calculation
steps is set to 25 000, which corresponds to 1874τ per
calculation.

We employed the following criterion to determine aggre-
gation of two particles. When the center-to-center distance of
the particles is less than the threshold distance Rth = 1.012σ ,
the particle pair is included in the same cluster. As shown
in Fig. 2, this threshold value corresponds to an interparticle
distance where the potential energy is only 1.17kBT higher
than the minimum of the interparticle interaction potential VLJ.
The aggregates obtained consist of primary particles and form
fractal structures at later stages of coagulation. One particle in
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FIG. 2. Interparticle interaction potential. The particles interact
via a modified 200:100 Lennard–Jones potential expressed by Eq. (7).
The dashed line indicates an that is energy 1.17kBT higher than the
potential minimum. The inset shows an enlargement about r/σ = 1.
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the averages obtained for five different initial configurations. The
dashed line shows the Smoluchowski theory given by Eq. (5), where
K = K0 = 4kBT/3μ.

each doublet can rotate freely around the other, allowing for
rearrangements of the cluster structure.

Figure 3 shows the temporal change of the reciprocal of
the total particle concentration for different initial particle
volume fractions. The slope represents the rate of coagulation.
Smoluchowski’s theoretical values are also plotted (dotted
line) in this figure. The rapid coagulation rate given in Fig. 3 is
less than the theoretical value predicted by Smoluchowski’s
theory for the dilute condition φp = 0.003. Furthermore,
increasing the volume fraction causes a corresponding increase
in the slope of the plot in the early stages of aggregation.
At higher volume fractions, φp � 0.03, an additional, drastic
increase in the slope is observed in the later stages of
aggregation.

For similar experimental estimations of the coagulation
rate at the early stages of coagulation [3], data in the time
interval from t = 0 to tc are used for least-squares fitting of the
coagulation rate K by Eq. (5). For φp � 0.015, the total particle
number was not halved in the computed times and the fitting
was performed over the whole data from the first time to the
last. For φp = 0.03,0.06,0.1, tc = 1745,661,288, respectively.
Figure 4 shows the volume fraction dependence of the ratio of
the rate in the early stages of coagulation to Smoluchowski’s
coagulation rate K/K0. The ratio asymptotically approaches
a certain value as it moves closer to the dilute limit volume
fraction. The coagulation rate obtained is estimated to be
approximately 0.3 to 0.5 times lower than that predicted by
Smoluchowski for the dilute limit. This agrees relatively well
with previous experimental results (e.g., the open point in
Fig. 4) for which K/K0 is reported to lie between 0.4 and
0.6 [2–6]. Nevertheless, our values are slightly lower than
those obtained experimentally.

The deviation of the observed coagulation rate from Smolu-
chowski’s theory can be mainly accounted for by the fact that
Smoluchowski’s theory does not consider interactions between
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result of Higashitani et al. [4]. The arrows indicate Smoluchowski’s
result and αBr = 0.5 estimated by Eq. (11). The solid line represents
Eq. (13).

particles. This theory ignores interparticle interactions,
whereas attractive forces due to long-range Van der Waals-
London potentials and repulsive forces due to HIs are known
to greatly affect actual coagulation processes. The presence of
these interactions necessitates corrections to Smoluchowski’s
theory. The effect on the interparticle potential V (s) with
respect to the coagulation rate was introduced as a stability
factor by Fuchs, where s = r/a [9]. Spielman then added
the hydrodynamic lubrication effect between particles to the
stability factor as a correction factor for the diffusion constant
C(s) [10]. According to their corrections, the ratio of the
theoretical coagulation rate (including these interparticle inter-
actions) to Smoluchowski’s rate of rapid Brownian coagulation
can be written as

αBr = K/K0 =
(

2
∫ ∞

2

C(s)

s2
eV (s)/kBT ds

)−1

. (11)

To calculate Eq. (11), Honig et al. used the Van der Waals
attractive potential generated by Hamaker [32] and the ap-
proximate expressions for HIs in Eq. (12) as V (s) and C(s) in
Eq. (11), respectively [11],

C(s) = (6s2 − 11s)/(6s2 − 20s + 16). (12)

These authors reported that αBr = 0.3–0.6, although this value
varies depending on the strength of Van der Waals attractions.
Their values are close to those obtained experimentally and the
corresponding Hamaker constant agrees well with theoretical
estimates [11]. Similar verifications have been conducted for
a variety of particles and a variety of measurement techniques
to verify the validity of the theoretical correction, according to
Eq. (11) [4,6].

In our case, we estimated αBr using Eqs. (7), (11), and
(12), where the integral range in Eq. (11) is limited from
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FIG. 5. Temporal concentration changes for particles of different
sizes. Dots represent the results for up to a threefold cluster at φp =
0.01,0.03,0.1. The horizontal axis is normalized by t ′

c = 1/KN0,
as is expected from coagulation rates K . The dashed line indicates
Eq. (6).

the distance of the Lennard-Jones potential minimum (i.e.,
s = 21/100σ/a = 2.014) to a sufficiently long distance. As
indicated by the arrow in Fig. 4, the reduction in the
coagulation rate due to interparticle interactions is estimated
to be approximately 50% of Smoluchowski’s value, which
does not include interparticle interactions. The obtained αBr

corresponds reasonably well with the present numerical results
for K/K0 at lower volume fractions. The reduction in this
estimated value relative to Smoluchowski’s value is mainly
due to the hydrodynamic lubrication effect, as represented by
Eq. (12).

It should be emphasized that our simulation results with
respect to the coagulation rate reduction from Smoluchowski’s
theoretical value are obtained by calculating HIs between par-
ticles without employing any approximations. Conventional
studies that employ BD simulations often have discrepancies
between experimental results and simulation-based results and
the ratio of the coagulation rates K/K0 is approximately unity
due to HIs not being considered in the simulations. In contrast,
our simulation results are consistent with current experimental
and theoretical results, clearly indicating that HIs between
particles play an important role in reducing the coagulation
rate.

Furthermore, as shown in Fig. 4, increases in the volume
fraction lead to gradual increases in the coagulation rate.
This result is qualitatively consistent with experimental and
simulation-based results [3,16,18,33]. The solid line shown
in Fig. 4 is given by a formula based on the regression
equation for the ratio of the coagulation rates K/K0 in the
high concentration system proposed by Heine et al. [16] as

K/K0 = α0

(
1 + 2.5

1 − φp
(− log φp)−2.7

)
. (13)
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FIG. 6. Temporal variation of particle size distributions at
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coagulation rates K .

Because Heine et al. obtained this formula from the calculation
results given by LD simulations in which HIs between particles
are not considered, the prefactor α0 = 1 appears in their
original formula. Their equation reduces to Smoluchowskifs
result K/K0 = 1 in the dilute limit (− log φp)−2.7 
 1. We
thus treat α0 as the scaling factor. By least-squares fitting
α0 to our result, we obtained α0 = 0.326. This result agrees
well with the form of Eq. (13) despite differences in the
calculation methods for considering HIs. It thus seems that
HIs directly affect the magnitude of the coagulation rate but
they do not affect the dependence of the coagulation rate on the
initial particle concentration for these relatively low volume
fractions.
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FIG. 7. Temporal variation of coagulation rate for (a) φp � 0.03
and (b) φp < 0.03. Temporal coagulation rate K ′ is obtained from the
differential of 1/Nt at each time in Fig. 3. In (b), K ′ are averaged
in time intervals of 100τ . The solid line indicates Smoluchowski’s
form for the coagulation rate, including unsteady-state effects
[i.e., α0(1 + Rij /

√
πDij t)]. Here, the relationship α0 = 0.326,Rij =

σ,Dij = 2D1 = 2kBT/6πμa is assumed.

Figure 5 shows the relationship between cluster concentra-
tion and the size and time at each volume fraction. Time in
the figure is normalized by the estimated coagulation time t ′c =
1/KN0, where K is the coagulation rate obtained by the fitting.
This figure also shows a theoretical line given by Eq. (6) in
which tc has been replaced with t ′c. As coagulation progresses,
the number of primary particles decreases and the populations
of doublet and triplet clusters increase. Next, the concentration
of doublet and triplet clusters decreases after it reaches a
maximum at around t = t ′c. In the early stages of coagulation
(i.e., t/t ′c < 1), the concentration of each cluster size is in
reasonable agreement with Eq. (6). However, in later stages
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FIG. 8. Temporal variation of number average radius of gyration.
Vertical axis is normalized by the primary particle’s radius a. The
averaging in Eq. (14) includes the contribution of primary particles
assumed to be clusters with Rg = a.

of coagulation (i.e., t/t ′c > 1), especially for higher volume
fractions φp � 0.03, the concentration of doublet and triplet
clusters falls significantly below the theoretical line. This result
can be largely attributed to cluster-cluster or heterogeneous
coagulation, as shown below. Figure 6 shows the temporal
changes in the particle size distribution at φp = 0.03,0.1. The
lines in the figure indicate Eq. (6) calculated using the obtained
coagulation rates K . As seen in Fig. 5, data in the early stages
of coagulation match Eq. (6) for a broad range of cluster
sizes. However, in later stages of coagulation, the proportion
of medium-sized clusters from twofold to several dozen fold
decreases and larger clusters with sizes of several hundred fold
are formed. These behaviors are thought to correspond to the
drastic increase of the slope in the later stages of coagulation
in Fig. 3. In this coagulation stage, coagulations between
clusters with nonspherical bulky shapes or between clusters
with heterogeneous collision diameters (e.g., between a large
cluster and the small particles around it) [13,16] are observed
in our simulations. At the end of the simulation of φp = 0.1, a
single large cluster expands to include the entire system, like
in gelation (not shown).

As seen in our simulation results, the coagulation process at
low particle volume fractions is still within the framework of
Smoluchowski’s assumptions until the end of the simulation
runs. However, at higher particle volume fractions, our results
show notable deviations from the early stage behavior. Next,
we discuss briefly on the late stage behavior.

The time at which the coagulation rate is measured affects
the coagulation rate and its volume fraction dependence.
Figure 3 indicates that the gradient of 1/Nt temporally in-
creases in the later stages of coagulation for high volume frac-
tions. Figure 7 shows the temporal change in the coagulation
rate, where the temporal coagulation rate K ′ is obtained from
the difference between 1/Nt with respect to time, at a particular
time in Fig. 3. At low volume fractions, short time changes of
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FIG. 9. The relationships between the cluster size Ni and the
radius of gyration of cluster Rg,j at φp = 0.1 for (a) t/τ � 1220 and
(b) t/τ > 1220. Equation (16) is shown by a solid line (df = 1.7)
and a dashed line (df = 1.8).

1/Nt are discrete due to the small numbers of particles, causing
numerical differential of 1/Nt to vibrate largely. K ′ is thus av-
eraged in time intervals of 100τ for φp < 0.03 [Fig. 7(b)]. For
φp � 0.03 [Fig. 7(a)], the differentials are not averaged. The
solid line in the figure represents Smoluchowski’s expression
for the coagulation rate, which includes unsteady-state effects,
α0(1 + Rij/

√
πDij t), like Eq. (4). Here, α0 represents the ratio

of the coagulation rate to that at steady state t � R2
ij /Dij . We

chose α0 as the same value obtained from the fitting of Eq. (13)
in Fig. 4. The relationship Rij = σ,Dij = 2D1 = 2kBT/6πμa

is also assumed. In Fig. 7(a), the initial coagulation rate
has a large value due to the unsteady-state particle spatial
distribution, as shown in Fig. 1. As time progresses, the
coagulation rate gradually decreases in a similar manner
to Smoluchowski’s form for the unsteady coagulation rate.
The coagulation rate subsequently has a local minimum
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at approximately t = tc and then increases abruptly due to
the cluster-cluster or heterogeneous coagulations mentioned
above. These minimum values in the temporal coagulation
rate in Fig. 7 approximately correspond to the values of K/K0

at φp � 0.03 in Fig. 4. At φp < 0.03, the coagulation rates
tend to converge to constant values with time. In our case,
the characteristic time constant for the unsteady-state regime
is roughly estimated at R2

ij /Dij ∼ 12πμa3/kBT = 404τ . As
the particle volume fraction increases, tc becomes shorter and
becomes comparable to this time constant. It is thus expected
that at high particle volume fractions, the unsteady state in
the initial coagulation stage will be immediately followed by
the later cluster-cluster or heterogeneous coagulation process
before the unsteady state converges.

Figure 8 shows the time evolution of the number average
radius of gyration of clusters 〈Rg〉:

〈Rg〉 = 1

Nc

Nc∑
j=1

Rg,j , (14)

R2
g,j =

Nj∑
i=1

(
Rj

i − RCM,j

)2
/Nj , (15)

where Nc is the total number of clusters, Nj is the number
of particles composing the j th cluster, Rj

i is the position
of the ith particle composing the j th cluster, and Rg,j and
RCM,j are the radius of gyration and the center of mass of the
j th cluster, respectively. The calculation of Eq. (14) includes
primary particles assumed to be clusters with Rg = a. For
φp � 0.03, radiuses of gyration of clusters increase abruptly
as time progresses. The time range for the growth in the radius
of gyration reasonably corresponds to those for increases of
coagulation rates in Fig. 7(a). This clearly suggests that spatial
growth of clusters lead to increases of coagulation rate in the
later stages of coagulation. At φp = 0.1, the radius of gyration
saturates and has a peak at about t/τ = 1220. This reflects
the generation of very large clusters expanding the whole of
system as mentioned so far.

It is well known that the internal structure of colloidal
aggregates and coagulation types can be described by concepts
of fractal geometry. Several models and experimental results of

cluster growth for self-similar aggregates obey the following
scaling relationship:

Nj ≈
(

Rg,j

a

)df

, (16)

where df is the fractal dimension which characterizes the
cluster geometric structures [34–36]. Figure 9 indicates the
relationship between cluster sizes and radiuses of gyration of
clusters at φp = 0.1. Figures 9(a) and 9(b) show data for t/τ �
1220 and t/τ > 1220, respectively. In the figure, lines of Eq.
(16), in which a prefactor is fixed two from the relation that
Rg/σ = 2 for doublets, are shown for comparison. In Fig. 9(a),
plotted data almost follow the scaling relationship. However,
in Fig. 9(b), points with large cluster sizes, Nj � 1000,
deviate largely from the scaling relationship. This suggests
the coexistence of very large clusters comparable to the system
size with small ones. This was confirmed also by visualizations
of cluster configurations.

V. CONCLUSIONS

The rate of rapid Brownian coagulation for fractional
particle volume at dilute conditions φp = 0.003 to that
at high volume conditions φp = 0.1 is investigated using
the DNS method, which explicitly considers HIs between
particles by simultaneously solving the motions of both the
particles and the fluid. In the dilute cases, the rate of rapid
Brownian coagulation is reduced to approximately 0.3–0.5
times the theoretical value predicted by Smoluchowski. This
result is consistent with the results of previous experimental
and theoretical studies that took account of hydrodynamic
effects. Because exact HIs are explicitly incorporated in our
simulation, the reproduction of this reduction in coagulation
rate by our calculations clearly indicates that this observed
reduction in the coagulation rate is caused by hydrodynamic
effects. Moreover, the volume fraction dependence of the
coagulation rate indicates that the coagulation rate increases
with increasing volume fraction. At high particle volume
fractions, the unsteady state in the initial coagulation stage
is expected to be followed by a later, highly heterogeneous
coagulation process before the unsteady state converges.
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