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We present the numerical results for the dynamics of a single chain in steady shear flow. The chain is
represented by a bead-spring model and the smoothed profile method is used to accurately account for the
effects of thermal fluctuations and hydrodynamic interactions acting on beads due to host fluids. It was
observed that the chain undergoes tumbling motions and that its dimensionless frequency F=6���3� /kBT
depends only on the Peclet number Pe with a power law F�Pe�, where kB is the Boltzmann constant, T is the
temperature, and � is the diameter of the beads. The exponent � clearly changes from 2/3 to 1 around the
critical Peclet number, Pec, indicating that the crossover reflects the competition of thermal fluctuation and
shear flow. The presented numerical results agree well with our theoretical analysis based on Jeffrey’s work.
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I. INTRODUCTION

The dynamics of solid particles dispersed in host fluids is
an important problem in many different fields of science and
engineering. The macroscopic properties of such dispersions
�the elastic modulus, viscosity, and thermal and electric con-
ductivities� greatly depend on the dynamics of the particles
in the host fluids. In equilibrium states, the dynamics of
small dispersed particles are strongly affected by the thermal
fluctuations of their host fluids. When flow is imposed, the
dynamics are also affected by the flow of the host fluids.
Because it is difficult to experimentally analyze these com-
plex particle dynamics, which are coupled both to thermal
fluctuations and to fluid flow, numerical simulations are par-
ticularly important for understanding the properties of par-
ticle dispersions in detail �1�.

For a single Brownian chain fluctuating in the shear flow
of a Newtonian fluid, it has been suggested that the tumbling
frequency � is proportional to the shear rate �̇2/3 �2–9�. This
has been experimentally confirmed by Schroeder, Teixeira,
Shaqfeh, and Chu �2� for the dynamics of individual DNA
molecules in a linear shear flow. Primarily, Smith, Babcock,
and Chu �10� measured the power spectral density �PSD� and
the probability distribution function �PDF� of the extension
length of each DNA molecule for various Weissenberg num-
bers Wi= �̇�, where �̇ is the shear rate and � is the relaxation
time of the chain orientation. The PSD of polymer extension
exhibits no peaks. In subsequent experiments �2,3�, however,
the focus has been put on the PSD of the orientation angle 	,
where 	=0 when the DNA molecule lies perfectly in the
flow direction. These experimental results support a simple
power law, ���Wi2/3, where � is the peak frequency of the
PSD. The relaxation time � is considered to be a constant if
the temperature is constant. This leads to ���̇2/3. Similar
results have also been obtained in other experiments �3,4�,
numerical simulations �5,6�, and theoretical analyses �7–9�.

Although the DNA molecules mentioned above can be con-
sidered flexible chains, a quite similar power law was ob-
tained using numerical simulations for a Brownian linear
rigid rod as well �2�.

For a single non-Brownian �thermally nonfluctuating�
flexible chain in shear flow, the tumbling frequency � is ex-
pected to be proportional to the shear rate �̇ �11�. A single
non-Brownian rigid rod with a finite aspect ratio is known to
exhibit a cyclic tumbling motion in shear flow, as described
by Jeffrey’s equation, ���̇ �12–14�.

From the above experimental findings, one would expect
to observe a crossover from Brownian ����̇2/3� to non-
Brownian ����̇� behavior with increasing shear rate; how-
ever, such a clear crossover has not yet been reported. This
crossover has not yet been successfully predicted by previ-
ous numerical �5,6� and theoretical �7–9� studies where a
dispersed chain is treated as an end-to-end vector, namely, as
an infinitely thin line. Therefore, the rotational motion of the
chain cannot be sustained across 	=0 without thermal fluc-
tuations. When a thermal fluctuation exists, the orientation of
the thin line can fluctuate around 	=0. This leads to tum-
bling motions even for a thin line; however, the frequency of
the tumbling motion � is always proportional to �̇2/3, regard-
less of the shear rate �9�.

We thus aim to analyze this crossover by use of a direct
numerical simulation approach. In the present study, we
simulated the tumbling motion of a chain using a smoothed
profile method �SPM� that accurately takes into account ther-
mal fluctuations and hydrodynamic interactions �15–18�. The
chain is represented by a bead-spring model, wherein each
bead is modeled as a spherical object with a finite radius a
and undergoes free rotation. Rigid rods or flexible chains are
represented with or without a constraint force on bond bend-
ing. Apart from the previous numerical models, the presented
bead-spring model naturally takes into account the finite
thickness of the experimentally used chains or rods. A theo-
retical analysis has also been developed to understand the
mechanisms underlying the crossover.
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II. METHODS

A. MODEL

We solve the dynamics of a single chain in a Newtonian
solvent using SPM �15–18�. In this method, boundaries be-
tween solid particles and solvents are replaced with a con-
tinuous interface by assuming a smoothed profile. This en-
ables us to calculate hydrodynamic interactions both
efficiently and accurately, without neglecting many-body in-
teractions. The equation governing a solvent with a density

f and a shear viscosity � is a modified Navier-Stokes equa-
tion,


f� �v�
�t

+ �v� · �� �v�� = − �� p + ��� 2v� + 
f�fp
� + f�shear, �1�

with the incompressible condition �� ·v� =0, where v��r� , t� and
p�r� , t� are the velocity and pressure fields of the solvent,
respectively. A smoothed profile function 0���r� , t��1 dis-
tinguishes between the fluid and particle domains, yielding
�=1 in the particle domain and �=0 in the fluid domain.
These domains are separated by thin interstitial regions, the
thicknesses of which are characterized by . The body force
�fp
� is introduced to ensure the rigidity of the particles and

the appropriate nonslip boundary condition at the fluid/
particle interface. The mathematical expressions for � and
�fp
� are detailed in previous papers �15,16�. The external

force f�shear is introduced to maintain a linear shear �19�, ex-
pressed by

vx = �
− �̇y �0 � y � Ly/4� ,

− �̇�− y +
Ly

2
	 �Ly/4 � y � 3Ly/4� ,

− �̇�y − Ly� �3Ly/4 � y � Ly� ,

 �2�

where �̇ is the shear rate and Ly is the system size in the y
direction.

In the present study, the chain is represented as either a
rigid rod or a flexible chain. We use a bead-spring model
consisting of N beads in a single chain. The bead size is
sufficient to fit several mesh units. Therefore, it is necessary
to consider the torque exerted on the bead. The motion of the
ith bead is governed by the following Newton’s and Euler’s
equations of motion with stochastic forces:

Mi
d

dt
V� i = F� i

H + F� i
P + F� i

C + G� i
V,

d

dt
R� i = V� i, �3�

I�i ·
d

dt
�� i = N� i

H + G� i
�, �4�

where R� i, V� i, and �� i are the position, translational velocity,
and rotational velocity of the beads, respectively. Mi and I�i

are the mass and moment of inertia, and F� i
H and N� i

H are the
hydrodynamic force and torque exerted by the solvent on the
beads, respectively �15,16�. G� i

V and G� i
� are the random force

and torque, respectively, due to thermal fluctuations. The
temperature of the system is defined such that the long-time

diffusive motion of dispersed particles reproduces correct be-
havior �17,18�.

F� i
P represents the potential force due to direct interbead

interactions such as Coulombic and Lennard-Jones poten-
tials. We use a bead-spring model as a model of a polymeric
chain with a truncated Lennard-Jones potential and a finitely
extensible nonlinear elastic �FENE� potential. The truncated
Lennard-Jones interaction is expressed in terms of ULJ

ULJ�rij� = �4��� �

rij
	12

− � �

rij
	6� + � �rij � 21/6�� ,

0 �rij � 21/6�� ,

 �5�

where rij = �R� i−R� j�. The parameter � characterizes the
strength of the interactions, and � represents the diameter of
the beads. Consecutive beads on a chain are connected by a
FENE potential of the form

UFENE�r� = −
1

2
kcR0

2 ln�1 − � r

R0
	2� , �6�

where r= �R� i+1−R� i�, kc=30� /�2, and R0=1.5�. F� i
C is the con-

straint force acting on the ith bead due to the bond-angle
constraints that cause the chain to form a straight line, and it
is used only for the rigid rod case. This is given by

F� i
C =

�

�R� i

��
�=3

N

�� � · �� �	 , �7�

�� � = �� − 2�R� 1 − �� − 1�R� 2 + R� �, �� = 3, . . . ,N� , �8�

where �� �=0 is the constraint condition to be satisfied. �� � is
a Lagrange multiplier associated with the intramolecular
forces of the constraints chosen such that the constraint con-
dition �� �=0 is satisfied at a time t+h, where h is the time
increment of a single simulation step.

B. SIMULATION

Numerical simulations have been performed in three di-
mensions with periodic boundary conditions. The lattice
spacing � is taken to be the unit of length. The unit of time
is given by 
f�

2 /�, where �=1 and 
f=1. The system size is
Lx�Ly �Lz=32�16�64. The other parameters include: �
=4, =2, �=1, �=1, Mi=4�a3 /3, N=5, and h=0.067.

In the presented simulations, the Navier-Stokes equation
is discretized with a dealiased Fourier spectral scheme in
space and with a second-order Runge-Kutta scheme in time.
To follow bead motions, the position, velocity and angular
velocity of the beads are integrated with the Adams-
Bashforth scheme.

At t=0, the chain aligns along the x axis, which is the
shear direction. The run-time of our simulations is about
3520 / �̇. The range of kBT is 5.0�10−4�kBT�1.0 and that
of �̇ is 1.0�10−3��̇�4.0�10−2.

From the symmetry of the system, to analyze the tumbling
motion of a chain, we only have to consider the projected
tumbling motion on the x-y plane. We introduce the chain
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orientation angle 	, which is the angle between the x axis
and the projected end-to-end vector on the x-y plane.

Evidence of periodic tumbling motion should appear in
the PSD per unit time �2,3�. Therefore, to investigate the
spectral properties of the orientation, we calculate the PSD
using a fast Fourier transform. The PSD is expressed as

PSD��� = � 	�t�exp�i�t�dt . �9�

III. RESULTS

In Figs. 1 and 2, the PSDs of the chain orientation angle 	
show a peak at a specific frequency �p, as shown in previous
studies �2,3�. Furthermore, the PSD data obtained at different
conditions of shear rate and temperature tend to lie on a
single master curve if a normalized frequency � /�p is used.
This is true for both rigid rods and flexible chains. This result
implies that the tumbling motion of chains is fully character-
ized by �p.

In Fig. 3, we find that �p follows the law �p��̇ for �̇
�0.02 at kBT=5.0�10−4, for both the rigid rod and the flex-
ible chain cases. Meanwhile, Fig. 4 shows �p��̇0.68 for �̇
�0.02 at kBT=1.0 for both.

Figure 3 also shows that, for �̇�0.02, �p is lower than the
frequency expected from the law �p��̇. P. Bagchi and S.
Balachandar have reported that, at a finite Reynolds number
approximately equal to 1, the sphere rotation frequency in a
linear shear flow decreases at a much slower rate than �̇ /2
�20�. The Reynolds number, Re, is given by Re=
 f�̇�2N /�.
In our paper, Re is equal to 1.6 at �̇=0.02. We only consider
�p in the region of �̇�0.02, so the effects of finite Reynolds
numbers do not influence the results.

We arrange data sets using the Peclet number to consider
the effect of competition between shear and fluctuation. The
Peclet number is the dimensionless number that relates the
rate of shear flow to the rate of thermal fluctuation. In our
work, the Peclet number, Pe, and dimensionless frequency,
F, are expressed as
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FIG. 1. �Color online� The behavior of PSD as a function
of � /�p for rigid rods at kBT=0.0005 and �̇=0.001 �blue ��,
kBT=0.006 and �̇=0.002 �red ��, and kBT=0.01 and �̇=0.008
�green ��.
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FIG. 2. �Color online� The behavior of PSD as a function of
� /�p for flexible chains at kBT=0.0005 and �̇=0.001 �blue ��,
kBT=0.006 and �̇=0.002 �red ��, and kBT=0.01 and �̇=0.008
�green ��.
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FIG. 3. �Color online� The behavior of �p as a function of �̇ at
kBT=0.0005. Rigid rod �green closed circle� and flexible chain �red
open circle�. The blue solid line corresponds to the law �p��̇. Error
bars are derived from the half band width of PSD.
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FIG. 4. �Color online� The behavior of �p as a function of �̇ at
kBT=1.00. Rigid rod �green closed circle� and flexible chain �red
open circle�. The blue solid line corresponds to the law �p��̇2/3.
Error bars are derived from the half band width of PSD.
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Pe =
6���3�̇

kBT
, �10�

F =
6���3�p

kBT
. �11�

We plotted the behavior of F as a function of Pe for the rigid
rod and flexible chain cases in Figs. 5 and 6. F was found to
depend only on Pe because the data sets have the same value
of F with the same value of Pe, even when the shear rates
and temperatures are different. In the rigid rod case, F
�Pe0.65 for Pe�106 and F�Pe for Pe�106. In the flexible
chain case, F�Pe0.68 for Pe�156 and F�Pe for Pe�156.
The behaviors of F for the rigid rod case and the flexible
chain case are roughly equal, although the values of the

Peclet numbers are different at the boundary where the ex-
ponent of Pe changes.

We define the critical value at which the exponent of Pe
drastically changes from almost 2/3 to 1 as the critical Peclet
number, Pec. F�Pe2/3 for Pe�Pec; otherwise, F�Pe. When
fluctuations dominate the system, the exponent is nearly
equal to 2/3. On the other hand, when shear flow dominates,
the exponent is exactly equal to 1.

In order to understand the behavior of F in the limit of
Pe→�, we examine the behavior of �p in the limit of kBT
→0 �Figure 7�. As shown in Figs. 5 and 6, the behavior of F
in the region of Pec�Pe is roughly equal to the behavior of
�p in the limit of kBT→0. Therefore, we believe that the
proportional relation F�Pe can be true across the entire re-
gion of Pec�Pe.

IV. DISCUSSION

A. Comparison with other rfaceesults

In our work, we calculate the tumbling motion of a single
chain for 0.0005�kBT�1.00 and 0.001��̇�0.04. As re-
ported in Jeffrey’s paper �12�, which treated non-Brownian
particles, �p follows the law �p��̇ at kBT=5.0�10−4, as
shown in Fig. 3. In previous papers �5–8� that treated Brown-
ian particles, �p follows the law �p��̇2/3 at kBT=1.0, as
shown in Fig. 4.

The dimensionless frequency, F, depends only on Pe. This
Pe dependence on F can be described by a power law, F
�Pe�. The exponent � drastically changes from 2/3 to 1 at
Pec; � equals 2/3 for Pe�Pec, while � equals 1 for Pec
�Pe. In the case of a rigid rod with N=5, Pec�106, and
Pec�156 in the flexible chain case. When fluctuations domi-
nate the system, F follows the law of F�Pe2/3. On the other
hand, when shear flow dominates, F follows the law of
F�Pe.

Gerashchenko and Steinberg �4� claim that there are two
dynamical regimes of polymer motion at Wi�1, depending
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FIG. 5. �Color online� The behavior of F as a function of Pe for
a rigid rod. The orange solid and blue dotted lines were calculated
from a least-squares fit of the data points. The orange solid line
corresponds to Pe0.65. The blue dotted line corresponds to Pe.
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FIG. 6. �Color online� The behavior of F as a function of Pe for
a flexible chain. The orange solid and blue dotted lines were calcu-
lated from a least-squares fit of the data points. The orange solid
line corresponds to Pe0.68. The blue dotted line corresponds to Pe.

FIG. 7. �Color online� The behavior of �p as a function of �̇ at
kBT=0. Rigid rod �red +�, flexible chain �green ��. The data sets
for the rigid rods correspond to the law �p=0.178�̇. The data sets
for the flexible chains correspond to the law �p=0.190�̇.
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on the polymer extension R. When R�Rmax, where Rmax is
the maximum polymer extension, the tumbling frequency �
is constant and independent of Wi. On the other hand, when
R�Rmax, � is proportional to Wi2/3. In Fig. 4, we did not
observe �p to be independent of �̇. We consider the chain
length to be too short in our work. The chain cannot keep the
coil state along the shear direction for long times. The chain
is fully stretched at short notice and is always rotated, al-
though Pe is small.

Previously, Szymczak and Cieplak �21� discussed the con-
formational dynamics of a single long protein in shear flow
and found two characteristic tumbling frequencies, �1 and �2.
They showed that the higher frequency �1 follows the law of
�1��̇; however, the lower frequency �2 follows the law of
�2��̇2/3. When the protein is tightly packed, it essentially
shows a spherical rotation in shear flow. As a result, �1 is
proportional to �̇. The lower frequency, �2, corresponds to
the stretching-collapse cycle; hence, �2 is proportional to
�̇2/3. Although our results are similar to theirs, the phenom-
ena in our system are essentially different from those in their
works because rigid rods cannot fold.

Davoudi and Schumacher �22� analyzed the stretching of
polymers in a turbulent flow. It is known that the polymers
undergo a coil-stretch transition at Wi�1 /2 in this system.
For Wi�1 /2, polymers are in the coiled state, and their size
distribution is stationary. In contrast, for Wi�1 /2, the poly-
mers are in the stretched state. Their stretching carries on
until their lengths reach the finite extensibility limit or until
turbulence stops the growth of the polymers. They found the
maximum Lyapunov exponent to be �� �̇3/2. However,
Chertkov et al. reported �� �̇2/3 in their work, where �−1 is
expressed as the mean stretching time scale. Davoudi and
Schumacher claimed also that their study could not be com-
pared with the analytic results of Chertkov et al. They de-
fined the shear time scale as Ts= �̇−1 and the fluctuation time
scale as Tf =D−1, where D is the strength of Gaussian fluc-
tuation. Chertkov analyzed the polymer dynamics in the re-
gion of Ts�Tf. Davoudi analyzed the polymer dynamics in
the region of ���Ts, where �� is the Kolmogorov time. No-
tably, Davoudi’s work studies a different regime of polymer
stretching than the analytic model of Chertkov’s work.
Chertkov et al. studied in the shear-dominated regime,
whereas Davoudi and Schumacher studied in the turbulence-
dominated regime.

Our work analyzed polymer dynamics in the region of
Ts�Tf. We do not consider the effect of turbulent flow. We
only considered the region with particle Reynolds number
Re�1.6, so the effects of finite Reynolds numbers do not
influence the results. In Davoudi’s work, by contrast, the
region of particle Reynolds number in the stretched state is
estimated to be Re��15, where Re�=vL /�, � is kinetic vis-
cosity, v is the root-mean square of the turbulent velocity
fluctuation, and L is the mean length of polymer. Therefore,
our study cannot be compared with Davoudi’s work.

B. Theoretical analysis

The geometry of the chain in our paper is depicted in Fig.
8. In Jeffrey’s work �12�, the angle 	 of non-Brownian rigid

rods with finite aspect ratios is governed by the equation

d

dt
	 = − �̇

r2 − 1

r2 + 1
sin2 	 − �̇

1

r2 + 1
, �12�

where the aspect ratio is r=L /� and L is the length of the
chain.

In our work, we consider the equation that governs the
angle 	 of a Brownian rigid rod with a finite aspect ratio. To
consider the diffusion of thermal fluctuation, we introduce
white noise ��t� into Eq. �12�. We can then write down the
following equation for a Brownian rigid rod:

d

dt
	 = − �̇

r2 − 1

r2 + 1
sin2 	 − �̇

1

r2 + 1
+ 2� Dr

cos2 �
� , �13�

���t���t��� = ��t − t�� , �14�

where Dr is the rotational diffusion constant. On the basis of
the shell model �23,24�, the rotational diffusion constant Dr
for a rigid rod is calculated as

Dr =
3�ln r + d�r��kBT

��L3 , �15�

d�r� = − 0.662 +
0.917

r
−

0.05

r2 . �16�

In the shell model mentioned above, the contour of the mac-
romolecules of arbitrary shape is represented by a shell com-
posed of many identical small beads. The shell model can be
adequately modeled by decreasing the size of the beads.

In the case of Dr��̇, the dynamics of the angle 	 become
decoupled from the angle � between the end-to-end vector
and the x-y plane because the angle � is approximately zero.
We can then write down the following equation:

d

dt
	 = − �̇

r2 − 1

r2 + 1
sin2 	 − �̇

1

r2 + 1
+ 2�Dr� . �17�

For short times, the mean square displacement of 	�t� in time
t is written as

��	�t� − 	�0��2� = 4Drt �for Drt � 1� . �18�

In order to analyze the tumbling motion of a single chain,
we only have to consider the dynamics in the stochastic area,

FIG. 8. The geometry of the present simulations.
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where the effect of thermal fluctuation is not negligible. In
the case of Dr��̇, the time required to pass through the
stochastic area is sufficiently larger than the time required to
pass through the other area. The tumbling motion can only
be understood by considering the stochastic area. The sto-
chastic area is dominated by the second and third terms on
the right-hand side of Eq. �17�. The remaining area is domi-
nated by the first term on the right-hand side of Eq. �17�.
Figure 9 shows the two areas and the angle 	t, which is the
boundary angle between the two areas. We call the second
and third terms on the right-hand side of Eq. �17� the shear
and the fluctuation terms, respectively.

1. Infinite aspect ratio case

First, we consider Eq. �17� in the limit where r→�. This
limit is consistent with treating a chain as an end-to-end
vector. We can rewrite Eq. �17� as 	̇=−�̇ sin2 	+2�Dr�, in
which the shear term does not exist. This equation is identi-
cal to the equation used in previous works �5–8�.

Previous works �4–6� have reported 	t��Dr / �̇�1/3. In the
region of 	t�	��, the shear flow rapidly rotates the ori-
entation of the chain from � to 	t in a time tl� �̇−1. In the
region of 0�	�	t, the chain orientation almost aligns
along the shear direction. Because the effect of shear be-
comes sufficiently small in this region, the effect of thermal
fluctuations only contributes to rotate the chain orientation
from 	t to 0 in time tr=	t

2 /4Dr��̇−2/3, as calculated with Eq.
�18�. In the case of tr� tl, tr dominates the chain tumbling
time. We can consider �p� tr

−1. Therefore, we conclude from
Eqs. �10� and �11� that F�Pe2/3.

2. Finite aspect ratio case

Next, we consider Eq. �17� with a finite aspect ratio, r. We
can expect F to be proportional to Pe2/3 when the fluctuation
term dominates in the region 0�	�	t, as this case agrees
with the limit of r→�. Additionally, we can expect F to be
proportional to Pe when the shear term dominates in the
region 0�	�	t because this case corresponds to the non-
Brownian rigid rod. Pec is defined as the Peclet number at
which the dominating term in the stochastic area changes
from the fluctuation term to the shear term with increasing
shear rate.

From Eq. �17�, we can write down the corresponding
Fokker-Planck equation as

�

�t
P�t,	� +

�

�	
J	 = 0, �19�

J	 = − ��̇
r2 − 1

r2 + 1
sin2 	 + �̇

1

r2 + 1
+ 2Dr

�

�	
�P�t,	� ,

�20�

where P�t ,	� is the PDF of the angle 	 and J	 is the prob-
ability flow. Each term in the braces of Eq. �20� corresponds
to a respective term on the right-hand side of Eq. �17�.

Next, we focus on the stationary PDF Pst�	�� P�t=0,	�.
Because �Pst�	� /�t=0, namely, �J	 /�	=0 from Eq. �19�, J	

is 	 independent and constant: J	=−�̇��r2−1�sin2 	pPst�	p�
+ Pst�	p�� / �r2+1�, where 	p is the angle at which Pst�	� has
a peak. We surmise that the angle 	t satisfies the equation
given by

J	

2
= − �̇

�r2 − 1�sin2 	Pst�	�
r2 + 1

= − �̇
Pst�	�
r2 + 1

− 2Dr
�Pst�	�

�	
.

�21�

By substituting the J	 expressed by 	p into Eq. �21�, the
relation of 	t to 	p is given as

− �̇
�r2 − 1�sin2 	pPst�	p� + Pst�	p�

r2 + 1

= − 2�̇
�r2 − 1�sin2 	tPst�	t�

r2 + 1
. �22�

The angle 	t is calculated by solving Eq. �22�. Pst�	t� is
expanded in powers �	=	t−	p. When we neglect the sec-
ond order of �	 and higher, we can relate 	t to 	p as

	t =�1

2
�	p

2 +
1

r2 − 1
	 . �23�

It should be noted that 	t , 	p�1. We can estimate 	t with
the angle 	p.

Next, we attempt to calculate the analytical form of 	p. In
the case of Dr / �̇�1, the formal solution for Pst�	� is given
by

Pst�	� = C1�
0

�

d� exp�−
�̇

4Dr
f��,	�	 , �24�

f��,	� = � − �1 −
2

r2 + 1
	sin � cos�� − 2	� , �25�

where C1 is determined from the normalization condition,
�0

�Pst�	�d	=1. In the limit of r→�, it is known that 	p
= �Dr / �̇�1/3 �6�. When r is finite, 	p is different from
�Dr / �̇�1/3 because the shear term influences Pst�	�.

To estimate the effect of the shear term, we introduce the
times t2� and t3�, where t2� and t3� represent the times required to
pass through the region 0�	� �Dr / �̇�1/3, depending only on
the shear term and the fluctuation term, respectively. t2� is
estimated by dividing �Dr / �̇�1/3 by the shear term as

FIG. 9. �Color online� Schematic diagram of two areas and the
angle 	t. The angle 	t is the boundary angle of the area dominated
by the first term and the area dominated by the second and third
terms on the right-hand side of Eq. �17�.
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t2� =
�r2 + 1�Dr

1/3

�̇4/3 , �26�

and t3� is estimated by Eq. �18� as

t3� =
1

4Dr
1/3�̇2/3 . �27�

Because the Brownian chain is rotated by both the shear term
and the fluctuation terms, we expect that 	p is given by

	p = C��r,Pe��Dr

�̇
	1/3

, �28�

C��r,Pe� �
t2�

t2� + t3�
= �1 +

1

4r2 + 1
� r3

18�ln r + d�r��
Pe�2/3�−1

.

�29�

For large �̇ /Dr where the present theoretical analysis is
valid, C��r ,Pe�� t2� / t3� finally approaches zero. We con-
firmed, however, that t2� / t3� still remains finite ��1� around
Pec�100, where �̇ /Dr�1000.

Figure 10 shows the behaviors of 	t� and 	t� as a function
of Pe, where 	t� is 	t calculated with Eq. �23� and 	p, which
is obtained from the numerical integration of Eq. �24�, and
	t� is 	t calculated with Eq. �23� and 	p, which is expressed
as Eq. �28�. In this figure, it is shown that Eq. �28� is estab-
lished because the behavior of 	t� agrees well with 	t� for
Pe�100. We can obtain 	t by substituting Eq. �28� into Eq.
�23�. Therefore, 	t is given by

	t = C�r,Pe��Dr

�̇
	1/3

, �30�

C�r,Pe� =�1

2
�C�2 + 4� r2 + 1

r2 − 1
	 1 − C�

C�
� . �31�

We consider that F is proportional to Pe2/3 when the effect of
thermal fluctuation is more significant than the effect of
shear flow in the region of 0�	�	t and that F is propor-
tional to Pe in the opposite case. t2 is the time required to
pass through the region 0�	�	t by the shear term,

t2 =
�r2 + 1�CDr

1/3

�̇4/3 . �32�

t3 is the time required to pass through the region 0�	�	t
by the fluctuation term,

t3 =
C2

4Dr
1/3�̇2/3 . �33�

It is thought that Pec is the Peclet number that satisfies t2
= t3. If we obtain the value of r, we know the value of Pec
because both t2 and t3 are functions of Pe and r. Our results
show that Pec�115 at r=5. In the numerical results obtained
from our work, Pec=106. The analytical result agrees well
with our numerical result. Moreover, the numerical condition
Dr��̇ is satisfied because Dr / �̇�10−3�1 at Pe�100.
Therefore, the considerations in this section are reasonable in
the region near Pec.

The considerations in this section agree well with those of
previous experimental results �2–4,10,14�. In experimental
works that measured the frequencies of DNA rotation
�2–4,10�, the DNA molecules contained roughly 400 persis-
tence lengths. The persistence length is thought to corre-
spond to r. Thus, we conclude that Pec�516. These experi-
ments were carried out in the region of Pe�Pec, and F is
proportional to Pe2/3. In experimental work that measured the
frequencies of freely rotating rigid dumbbells �14�, the aspect
ratio r of the rigid dumbbell corresponds to 2 and Pec�60.
The experiments were carried out in the region of Pec�Pe,
and F was proportional to Pe. From these results, the consid-
erations in this section are reasonable.

V. CONCLUSION

In our work, we calculated the tumbling motion of a
single chain using an SPM that takes into account thermal
fluctuations and hydrodynamic interactions for 0.0005
�kBT�1.00 and 0.001��̇�0.02. We conclude that the di-
mensionless frequency, F, depends only on Pe. The depen-
dence of F can be described by a power law F�Pe�. The
exponent � sharply changes from 2/3 to 1 on Pec. In the case
of a rigid rod with N=5, Pec�106, and in the case of a
flexible chain with N=5, Pec�156. The behavior of F for
both cases is similar, while only the values of Pec are differ-
ent from each other.

We have presented F to be proportional to Pe2/3 when the
third term on the right-hand side of Eq. �17� dominates in the
region 0�	�	t, and F is proportional to Pe when the

FIG. 10. �Color online� The behavior of 	t as a function of Pe.
	t� is 	t calculated with 	p, obtained from numerical integration
�red +�. The green solid line corresponds to the behavior of 	t�,
where 	t� is 	t, obtained from 	p= �t2� / �t2�+ t3���� �Dr / �̇�1/3.
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second term of Eq. �17� dominates in the region 0�	�	t.
We have estimated the angle 	t at which the fist term of J	,
expressed as Eq. �20�, is comparable to the sum of the sec-
ond and third terms of J	, expressed as Eq. �20�.

A proposed mechanism for this exponent change is that
the effect of thermal fluctuation is more significant than the
effect of shear flow only for 0�	�	t, whereas in the other
case, the effect of thermal fluctuation is negligible. The

former contribution leads to F�Pe2/3, and the latter contri-
bution leads to F�Pe.
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