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Motions of fluctuating Brownian particles in an incompressible viscous fluid have been
studied by coupled simulations of Brownian particles and host fluid. We calculated the veloc-
ity autocorrelation functions of Brownian particles and compared them with the theoretical
results. Extensive discussions have been made on the time scales for which our numerical
model is valid.

§1. Introduction

The motions of small fluctuating particles in viscous fluids have been studied
for a long time. Although theoretical or numerical analysis based on the coupled
motions of the particles and the host fluid are very complicated, it becomes rather
simple if one considers only the particles’ motions by assuming that the host fluid
degree of freedom can be safely projected out from the entire degree of freedom of
the dispersions. One of such models is the well-known generalized Langevin equation
(GLE) for Brownian particles, i.e.,

Mi
dVi

dt
=

∫ t

−∞
ds

∑
j

Γij(t − s)Vj(s) + Gi(t), (1.1)

〈Gi(t) · Gj(0)〉 = 3kBTΓij(t), (1.2)

where Mi and Vi denote the mass and the translational velocity of the i-th particle,
respectively. Γij(t) is a friction tensor, which represents the effect of hydrodynamic
interactions (HI) between i-th and j-th particles. Gi is the random force acting on
the i-th particle induced by thermal fluctuations of the solvent, kB is Boltzmann
constant, and T is the temperature of Brownian particles.

For a single spherical particle (i = 1) immersed in a infinitely large host fluid,
the analytic form of the time-dependent friction1) is known as∫

dtΓ11(t) exp(−iωt) = Γ̂11(−iω) = 6πηa(1 + a
√

−iω/ν − iωa2/9ν) , (1.3)

where Γ̂11(−iω) is the Fourier transform of Γ11(t) and ω is the angular frequency. The
first term corresponds to the normal Stokes friction for a spherical particle of radius
a in a Newtonian fluid whose viscosity is η. The second term represents the memory
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effect, which is related to the momentum diffusion in a viscous medium. Here the
kinematic viscosity is defined as ν = η/ρf with ρf being the density of the fluid. The
third term corresponds to the effect of the acceleration of the host fluid surrounding
the tagged particle when the particle is accelerated through the host fluid. Using
Eq. (1.3), the hydrodynamic GLE can be solved analytically. The translational
velocity autocorrelation function (VACF) 〈Vi(t) ·Vi(0)〉/3 then obtained is known to
exhibit the characteristic power-law relaxation for long-time region, which is widely
known as the “hydrodynamic long-time tail”.2)–5)

For dispersions composed of many particles interacting via HI, the situation is
still not straightforward because we do not know the true analytic expression for the
hydrodynamic friction tensor Γij(t). Some approximated expressions, such as Oseen
or Rotne-Prager-Yamakawa (RPY) tensor, can be obtained by introducing the Stokes
approximation. However, those expressions completely neglect the memory effect
that corresponds to the second term of Eq. (1.3). This means that the hydrodynamic
long-time tail cannot be reproduced correctly with Oseen or RPY tensor.

In the present study, we developed a numerical method to take into account
the effects of hydrodynamics directly by simultaneously solving the Navier-Stokes
equation for the host fluid with the Brownian motions of the particles. We first
examined the VACF for a single Brownian particle and compared it with the analyt-
ical form mentioned above. Secondly, we examined the rotational motions of a single
Brownian particle. We furthermore examined the motions of Brownian particles in
harmonic potentials to check the validity of our method.

§2. Simulation method

Here we briefly explain the basic equations of our numerical model since those
are explained in detail elsewhere.6) A smooth profile function 0 ≤ φ(x, t) ≤ 1 is
introduced to define fluid (φ = 0) and particle (φ = 1) domains on a regular Cartesian
grid. Those two domains are separated by thin interface regions whose thickness is
ξ. The position of the i-th particle is Ri, the translational velocity is Vi, and the
rotational velocity is Ωi. The motion of i-th particle with mass Mi and the moment
of inertia Ii is governed by the following Langevin-type equations,

Mi
dVi

dt
= F H

i + F C
i + F ex

i + GV
i ,

dRi

dt
= Vi, (2.1)

Ii · dΩi

dt
= NH

i + GΩ
i , (2.2)

where F H
i and NH

i are the hydrodynamic forces and torques acting on the i-th
particle due to HI, respectively. F C

i and F ex
i denote the direct particle-particle

interaction and external force. GV
i and GΩ

i are the random force and torque due to
thermal fluctuations defined stochastically as

〈GV
i 〉 = 〈GΩ

i 〉 = 0, (2.3)

〈GV
i (t) · GV

j (0)〉 = 3kBTαV δ(t)δij, (2.4)

〈GΩ
i (t) · GΩ

j (0)〉 = 3kBTαΩδ(t)δij, (2.5)
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where αV and αΩ are parameters to control the temperature T .
The motions of the host fluid are governed by the Navier-Stokes equation

ρf (∂tv + v · ∇v) = −∇p + η∇2v + ρfφfp (2.6)

with the incompressible condition ∇ · v = 0, where v and p are the velocity and the
pressure fields of the host fluid, respectively, and φfp is the body force defined so
that the rigidity of the particles is automatically satisfied. Note that F H

i and NH
i

are determined from the body force φfp.7),8)

§3. Results and discussion

A single spherical particle fluctuating in a Newtonian fluid was simulated in
the absence of external forces F ex

i = 0 as depicted in Fig. 1. We take the mesh
size Δ and τ = Δ2ρf/η as the units of space and time. Simulations have been
performed with η = 1, a = 5, and ξ = 2 in a three-dimensional cubic box composed
of 64 × 64 × 64 grid points. The particle and fluid densities are identically set to be
unity, ρp = ρf = 1.

Figure 2 shows our simulation results (�) of VACF for a single Brownian par-
ticle fluctuating in a Newtonian host fluid at kBT = 0.83. The temperature T was
determined by comparing the long-time diffusion coefficient Dsim obtained from sim-
ulations with DV = kBT/6πηaK(Φ), where K(Φ) takes into account the effects of
finite volume fraction9) and Φ denotes the volume fraction. The volume fraction of a
single particle is Φ = 0.002. One finds that the VACF approaches asymptotically to
the power-law line with the exponent −3/2, and the long-time behavior of our sim-
ulation agrees well with the analytical solution5) of the hydrodynamic GLE rather
than the Markovian VACF which neglects memory effects. This behavior indicates
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Fig. 1. A snapshot of a single Brownian particle immersed in a Newtonian fluid. The one eighth

of the entire system is graphically displayed. The color map on the horizontal plane shows the

value of the local fluid velocity in the x-direction.
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Fig. 2. The translational velocity autocorrelation function 〈Vi(t) ·Vi(0)〉/3 (triangle) and the rota-

tional velocity autocorrelation function 〈˙i(t) · ˙i(0)〉/3 (circle) for a single Brownian particle

fluctuating in a Newtonian fluid. The simulation data was taken at kBT = 0.83. The solid

lines indicate the analytic results for the translational5) and the rotational motions. The dot-

ted lines show power-laws, Bt−3/2 with B = kBT/12ρf (πν)3 for the translational motions and

Ct−5/2 with C = πkBT/32ρf (πν)5/2 for the rotational motions. The dashed lines indicate

the Markovian VACF and RVACF, which decay exponentially as exp(−t/τB) and exp(−t/τr),

respectively.

that the memory effects are accurately taken into account. Similar to the transla-
tional motions, we have studied the rotational motions of the Brownian particle in
the host fluid. The GLE of the rotational motions for a single spherical particle can
be written as

IiΩ̇i = −
∫ t

−∞
dsμ(t − s)Ωi(s) + Gi(t), (3.1)

〈Gi〉 = 0, 〈Gi(t) · Gi(0)〉 = 3kBTμ(t), (3.2)

where the time-dependent friction μ(t) has the form μ̂(−iω) = 8πηa3[1− iω/3ν(1 +
a
√−iω/ν)]10) in Fourier space. The first term in μ̂ is the Stokes friction and the

second term represents the memory effect due to the kinematic viscosity of the fluid.
The GLE can be solved analytically, and the analytical solution of the rotational
velocity autocorrelation function (RVACF) is obtained in the following form:

〈Ωi(t) · Ωi(0)〉

= −3kBTν

8πηa5

∫ ∞

0

dy

3π
exp(−yt/τν)

[
y3/2

[1 − ( τr
τν

+ 1
3)y]2 + y(1 − τr

τν
y)2

]
, (3.3)
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where τν = a2/ν and τr = Ii/8πηa3. In Fig. 2, simulation results (©) of RVACF
are also plotted. The RVACF clearly shows the asymptotic approach to the hy-
drodynamic long-time tail with the exponent −5/2 which agrees well with the an-
alytical solution (3.3) rather than a simple Markovian RVACF. By comparing the
present simulation results with the corresponding analytical solutions more in de-
tail, one may notice that some discrepancies become notable for t < τB or t < τr,
where τB = Mi/6πηa = 2a2ρp/9η � 5 is the Brownian relaxation time and τr =
Ii/8πηa3 = 3τB/10 � 1.5 is the Brownian rotational relaxation time. For opposite
cases t > τB or t > τr, however, the agreements between the numerical results and
the analytical solutions are excellent. This is because we neglected memory effects
in thermal noises GV

i and GΩ
i . We however believe that the long-time behavior of

our numerical model is valid for t > τB since τB is much longer than the memory
times of the thermal noises.

There exist many other characteristic time-scales in particle dispersions. Impor-
tant ones are the kinematic time-scale τν = a2ρf/η = 25 which measures the momen-
tum diffusion over the particle size and the diffusion time-scale τD = a2/D � 3×103

which measures the particle diffusion over the particle size. As one can see in Fig. 2,
the present model works quite well for the time-scales comparable to τν and τD,
while it becomes inaccurate for t < τB.

In order to test the validity of our method for the long-time behavior of Brow-
nian particles, we next applied the present model to simulate Brownian particles
fluctuating in external harmonic potentials. The potentials are introduced with the
form

Fi
ex = −k(Ri − Req

i ) = −kΔRi, (3.4)

where Req
i is the i-th particle’s equilibrium position and k is the spring constant.

Figure 3 shows the positional autocorrelation function 〈ΔRi(t)·ΔRi(0)〉/3 of two
Brownian particles in harmonic potentials whose minimum positions are separated
by a fixed distance of 5a. The pair of particles are interacting only hydrodynamically,
and there exists no direct interactions between them. The spring constant is set to
k = 10, and the temperature is kBT � 0.0066, which was determined by the average
potential energy kBT = k〈ΔR2

i 〉/3. The simulation results (©) agree well with
the hydrodynamic analytical solution5) in harmonic potentials which account for
the effects of finite volume fraction. The analytical solution was derived by solving
the GLE of a single Brownian particle in a harmonic potential which includes the
modified Stokes friction ζ = 6πηaK(Φ). The correlation functions decay much slower
than the Markovian relaxation functions. We also confirmed that the validity of our
method is excellent for t ≥ τν .

§4. Conclusion

We proposed a numerical model to simulate Brownian particles fluctuating in
Newtonian host fluids. To test the validity of the model, the translational velocity
autocorrelation function (VACF), the rotational velocity autocorrelation function
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Fig. 3. The positional autocorrelation function 〈ΔRi(t) ·ΔRi(0)〉/3 (circle) for a system composed

of two Brownian particles in harmonic potentials −k(Ri − Req
i ). The distance between their

equilibrium positions is |Req
1 − Req

2 | = 5a. The solid line shows the analytical solution.5) The

dotted line shows the Markovian functions, i.e. the solution of MiV̇i = −6πηaVi − kRi + Gi.

(RVACF), and the positional autocorrelation function of fluctuating Brownian par-
ticles were calculated in some simple situations for which analytical solutions were
obtained. We compared our numerical results with the analytical solutions and found
excellent agreements between them specially for long-time regions t > τB while some
discrepancies were found for short time regions t < τB . This is because our model is
designed to simulate correct long-time behaviors of Brownian particles in host fluids.
Applications of the present method for more complicated situations are in progress.
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4) E. H. Hauge and A. Martin-Löf, J. Stat. Phys. 7 (1973), 259.
5) H. J. H. Clercx and P. P. J. Schram, Phys. Rev. A 46 (1992), 1942.
6) T. Iwashita, Y. Nakayama and R. Yamamoto, J. Phys. Soc. Jpn. 77 (2008), 074007.
7) Y. Nakayama and R. Yamamoto, Phys. Rev. E 71 (2005), 036707.
8) Y. Nakayama, K. Kim and R. Yamamoto, Eur. Phys. J. E 26 (2008), 361.
9) A. A. Zick and G. M. Homsy, J. Fluid Mech. 115 (1982), 13.

10) S. H. Lamb, Hydrodynamics (Dover Publications, New York, 1932).


