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The short-time motion of Brownian particles in an incompressible Newtonian fluid under shear, in which the
fluid inertia becomes important, was investigated by direct numerical simulation of particulate flows. Three-
dimensional simulations were performed, wherein external forces were introduced to approximately form
Couette flows throughout the entire system with periodic boundary conditions. In order to examine the validity
of the method, the mean-square displacement of a single spherical particle in a simple shear flow was calcu-
lated, and these results were compared with a hydrodynamic analytical solution that includes the effects of the
fluid inertia. Finally, the dynamical behavior of a monodisperse dispersion composed of repulsive spherical
particles was examined on short-time scales, and the shear-induced diffusion coefficients were measured for
several volume fractions up to 0.50.
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I. INTRODUCTION

The short-time motion of small particles fluctuating in a
Newtonian fluid is strongly affected by fluid inertia, that is,
the vorticity of the host fluid surrounding the dispersed par-
ticles. If a dispersed particle accelerates due to Brownian
forces, it affects the motion of the host fluid in the neighbor-
hood of the particle, while the vorticity generated by the
particle’s motion then affects the motion of the same particle.
These effects are referred to as memory effects and have an
important role in the dynamical motion of a dispersion on
short-time scales �1–3�.

The vorticity diffuses away on a kinematic time scale ��

=a2 /�, where a is the radius of the spherical particle and � is
the kinematic viscosity of the host fluid ��10−6 s for 1 �m
in water�. When the vorticity diffuses away much faster than
the particle’s motion, i.e., ����B=M /6��a, where M is the
mass of a Brownian particle and � is the shear viscosity of
the host fluid, the motion of a Brownian particle is well
approximated by the normal Langevin equation �LE�, which
is valid for strong damping �Reynolds number Re→0� or
long-time scales; however, this equation, wherein the effects
of the fluid inertia are ignored, is not applicable to a disper-
sion composed of neutrally buoyant particles since �B is
comparable to ��. For a complete understanding of the short-
time motion of a dispersion, the inertias of the particle and
the host fluid cannot be neglected.

One way to account for memory effects is to simulta-
neously resolve the fluid motion with the particle motion as a
boundary condition to be satisfied. We refer to this approach
as the direct numerical simulation �DNS� approach. Within
the DNS approach, various numerical methods have been
developed �4–9,15�, and the power-law decay behavior in the
velocity autocorrelations of a free Brownian particle has
been accurately reproduced. This slow relaxation of the cor-
relation behavior is one of the main features of memory ef-

fects. Although most of these methods have been applied to
dispersions composed of free Brownian particles at thermal
equilibrium, dispersions under flows that are far from equi-
librium have not been examined in detail, even for the simple
case of a single Brownian particle in a shear flow on a short-
time scale, ��. Furthermore, most numerical methods used
for concentrated dispersions under shear, which are widely
used for measuring rheological properties, are limited to a
Reynolds number of zero, and the short-time motions of the
dispersed particles in concentrated dispersions cannot be cor-
rectly tracked.

Recently, we have developed a numerical method, known
as the “smoothed profile method �SPM�” �10,11�, for the
DNS of particulate flows. Its computational accuracy and
efficiency have been examined carefully by Lio et al. �12�
for several flow problems. The SPM has been applied to a
dispersion composed of free Brownian particles at thermal
equilibrium �13,14�. We have also succeeded in reproducing
the power-law decay behavior in the translational and rota-
tional velocity autocorrelations of a Brownian particle, and
these results agree well with hydrodynamic analytical solu-
tions for a free Brownian particle in an infinite fluid that
accounts for memory effects.

In order to simulate dispersions in nonequilibrium condi-
tions on short-time scales in which memory effects become
significant, we have modified the SPM. The primary objec-
tive of the present work is to accurately examine the short-
time motion of Brownian particles in a simple shear flow by
using the modified SPM. In this paper, we first present the
modified SPM, in which external forces are introduced to
impose a shear flow into the system. In order to validate the
method, we next compare the numerical results for the mean-
square displacement �MSD� with a hydrodynamic analytical
solution of a Brownian particle in simple shear flows that
account for fluid inertia. Furthermore, we apply our method
to a dispersion composed of many spherical particles under
shear. The MSD in the vorticity direction is then calculated
for several volume fractions, and the time evolution is dis-
cussed. Finally, the shear-induced diffusion coefficients are
measured from the long-time behavior of the MSD, and the
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dependence of the determined diffusion coefficients on the
volume fraction is examined.

II. SIMULATION METHOD

Let us consider a monodisperse dispersion of repulsive
spherical particles in a Newtonian host fluid. The dispersion
is subjected to shear by an external force. The position of the
ith particle is Ri, the translational velocity is Vi, and the
rotational velocity is �i. The velocity and pressure fields of
the host fluid are v�x , t� and p�x , t�, respectively. These field
quantities are defined on three-dimensional Cartesian grids,
x� �0,Lx��−Ly /2,Ly /2��0,Lz�. In order to distinguish the
particle and fluid domains on the grids, a smoothed function
��x , t�, which is equal to 1 in the particle domains and 0 in
the fluid domains, is introduced. These domains are sepa-
rated by a thin interfacial domain of thickness 	. The length
unit is taken to be the lattice spacing �, and the time unit is

 f�

2 /�, where 
 f denotes the density of the host fluid. The
time evolution of the ith dispersed particle with mass Mi and
moment of inertia Ii is governed by Newton’s equations of
motion,

MiV̇i = Fi
H + Fi

C + Gi
V, Ṙi = Vi, �1�

Ii · �̇i = Ni
H + Gi

�, �2�

where Fi
H and Ni

H are the hydrodynamic forces and torques
exerted by the host fluid on the particle �10,11�. Fi

C is a
repulsive force that is employed to prevent particle overlaps,
and a truncated Lennard-Jones potential, V�rij�=4��
 /rij�36

− �
 /rij�18+1 /4� for rij �21/18
 or V�rij�=0, is adopted in
this work. Here rij = �Ri−R j� and 
=2a represents the diam-
eter of particles. Gi

V and Gi
� are random forces and torques,

respectively, due to thermal fluctuations. These fluctuations
are introduced as white noise with a zero mean and correla-
tions �Gi

V�t�G j
V�0��=�VI��t��ij and �Gi

��t�G j
��0��

=��I��t��ij, where �V and �� are numerical parameters that
control the translational and rotational particle temperatures,
namely, TV and T� �13,14�. The angular brackets denote tak-
ing an average over an equilibrium ensemble. The tempera-
tures are determined by the following procedure. First a
single Brownian particle at thermal equilibrium is simulated
with fixed �V and ��. Then the translational and rotational
long-time diffusion coefficients are obtained from the simu-
lation. By comparing these diffusion coefficients with
Stokes-Einstein diffusion coefficients, D0

V=kBTV /6��a for
the translational motion and D0

�=kBT� /8��a3 for the rota-
tional motion, we finally can determine the temperatures.
Since both �V and �� are chosen to satisfy kBTV=kBT�, the
temperatures are simply written as kBT throughout this paper.

The time evolution of the host fluid is governed by the
Navier-Stokes equations,


 f��tv + v · �v� = � · � + 
 f�fp + 
 f fshear, �3�

� = − pI + �	�v + ��v�T
 , �4�

where the incompressibility condition, � ·v=0. fshear�x , t� is
an external force field that is introduced to enforce the fol-
lowing velocity profile:

vx�y� = ��̇�− y − Ly/2� �− Ly/2 � y � − Ly/4�
�̇y �− Ly/4 � y � Ly/4�
�̇�− y + Ly/2� �Ly/4 � y � Ly/2� ,

� �5�

where �̇ denotes the shear rate of the imposed flow and y
denotes the distance in the velocity-gradient direction. This
velocity profile, schematically depicted in Fig. 1, enables us
to solve the motion of the host fluid with periodic boundary
conditions. Couette flow profiles are approximately formed
over a range from y=−Ly /4 to y=Ly /4, although the zigzag
profile strictly becomes a Couette flow when Ly→�. �fp
represents the body force that ensures the rigidity of particles
and the appropriate nonslip boundary conditions at the fluid/
particle interface, which is further elaborated in Refs.
�10–12�.

III. RESULTS AND DISCUSSION

The computational domain has three dimensions 64�64
�64 and periodic boundary conditions. The numerical pa-
rameters for both the host fluid and the spherical particles are
�=1, �=1, 
 f =1, a=5, 	=2, and particle density 
p=1. The
imposed shear rate is �̇=0.005, and the temperature is kBT
=0.07. The temperature was determined by measuring the
long-time diffusion coefficient of a single Brownian particle
at thermal equilibrium before the shear was imposed. This
system has dimensionless parameters such that the Peclet
number Pe=6��a3�̇ /kBT
170 and the particle Reynolds
number Rep=
p�̇a2 /�=0.125. The initial configuration of
the spherical particle is located at the central position of the
system. The volume fraction of a single particle is �
=0.002.

An important feature of a single Brownian particle in a
simple shear flow is that the MSD in the flow direction varies
asymptotically with time as t3. Although we would expect t
dependence of the MSD in the long-time limit, this nondif-

x

y

z
FIG. 1. Schematic diagrams of a zigzag velocity flow. The ar-

rows represent the velocity vectors of the host fluid in the flow
direction. The x, y, and z axes represent the flow, velocity-gradient,
and vorticity directions, respectively.
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fusional behavior is explained as a result of a coupling be-
tween diffusive motion in the velocity-gradient direction and
convective motion due to shear in the flow direction . Theo-
retical solutions to this problem show that the MSD in the
flow direction �x� is composed of three parts,

�Ri
x�t�2� = vx

2�y0�t2 + �Ri
x�t�2��̇ + �Ri

x�t�2�0, �6�

assuming that, at t=0, the particle is in the initial position
�0,y0 ,0�, wherein the first term on the right-hand side of Eq.
�6� is a shear contribution only, and represents the simple
translation of a particle along the streamline in the flow di-
rection. The second term is the coupling term described
above, which represents the convection induced by diffusion.
The third term, which is in the same form as the MSD of a
free Brownian particle, is a thermal contribution only. Simi-
lar to that of the x direction, the MSDs in the velocity-
gradient direction �y� and the vorticity direction �z� are de-
rived theoretically; �Ri

y�t�2�= �Ri
y�t�2�0 and �Ri

z�t�2�= �Ri
z�t�2�0.

These quantities are determined analytically for a single
Brownian particle obeying the normal LE or the generalized
Langevin equation �GLE� with memory effects �16–18�.

The time evolution of the MSD in the x direction ��� for
a single spherical particle under shear is shown in Fig. 2. The
MSD was calculated via ��Ri

x�t�−Ri
x�0�−vx�y0�t�2� to elimi-

nate the purely shear contribution that corresponds to the first
term of Eq. �6�. The MSD is scaled by kBT. The MSD is in
excellent agreement with the analytical solution for the GLE.
For short times of up to t�102, the motion of the Brownian
particle in the x direction is like that of a free Brownian
particle obeying the GLE. For long times, t���=25, the
MSD asymptotically approaches 2D0�̇2t3 /3, where D0
=kBT /6��a. This t3 regime in the MSD is approached in a
much slower manner, t−1/2, than that of the analytical solu-
tion for the LE. The transient behavior of the MSD depends
strongly on whether the memory effects are taken into ac-
count.

The MSD ��Ri
z�t�−Ri

z�0��2� in the z direction ��� is also
plotted in Fig. 2. The numerical results of the MSD in the z
direction agree well with the analytical solution for the GLE
of a free Brownian particle where the t regime is approached
in a much slower manner, t−1/2, and the diffusive motion is
attained on time scales of O�104�. The diffusion time char-
acterizing the diffusive motion is �D=a2 /D0
3.4�104,
which measures the particle diffusion over the particle size.

Another dynamical quantity of interest is the positional
cross-correlation �Ri

x�t�Ri
y�t�� of a Brownian particle in a

simple shear flow. This analytical form is derived for both
the LE and GLE. These long-time behaviors show the same
dependence on t, which is D0�̇t2. The cross correlation was
calculated via �(Ri

x�t�−Ri
x�0�−Vi

x�0�t)(Ri
y�t�−Ri

y�0�)�. The nu-
merical results ��� are plotted in Fig. 2 and are in good
agreement with the analytical solution for the GLE.

This detailed analysis of the MSD is sufficient to confirm
the validity of our method of incorporating memory effects;
however, within our method, it is assumed that the thermal
fluctuations can be represented by white and Gaussian noise.
This means that correlations between thermal noise at differ-
ent times are completely ignored, although in the theoretical
framework of the GLE, noises are correlated. The thermal

noise memory, which we ignore, is considered to affect the
particle’s motion on very fast time scales t��B�4.5. On
these very short-time scales, t��B, a gap between the hydro-
dynamic analytical solutions and the numerical results is
clearly observed in previous studies �13,14�. Although our
method is not applicable to particle motion for t��B, the
method can be accurately applied to the motion of particles
in a shear flow on time scales t��B, in which the memory
effects become significant.

Most numerical approaches so far performed for concen-
trated particle dispersions are based on the Stokesian dynam-
ics �19�; thus those simulations are valid only for the zero
Reynolds number limit. Recently, concentrated dispersions at
finite Reynolds number have been simulated using the DNS
methods based on the stochastic rotation dynamics �20� or
the lattice Boltzmann method �21–23�, We have applied the
modified SPM to concentrated dispersions at a finite Rey-
nolds number Rep=0.125 in order to examine the short-time
motion of Brownian particles in a shear flow at finite-volume
fractions. Simulations were performed at several volume
fractions from a very dilute case with �=0.002 to very dense
cases with �=0.4 and 0.5, which are apparently higher than
the previous DNS simulations.
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FIG. 2. �Color online� Mean square displacement scaled by kBT
of a single spherical particle fluctuating in a Newtonian fluid under
shear at kBT=0.07 and �̇=0.005: ��� flow direction, ��� vorticity
direction, and ��� positional cross correlation. The analytical solu-
tion of the MSD in the flow direction �x� for a Brownian particle in
a shear flow: the dashed line represents the LE and the solid line
represents the GLE. The dashed-dotted line is the analytical solu-
tion of the MSD in the vorticity direction �z� for the GLE, which is
the same form as that for the GLE of a free Brownian particle The
analytical solution of the positional cross correlation for a Brownian
particle in a shear flow: the dotted line represents the LE and the
dashed line represents the GLE. The Brownian time �B
4.5, the
kinematic time ��=25, and the diffusion time �D
3.4�104. The
parameters for both the particle and fluid are a=5, 	=2, 
p=1, 
 f

=1, and �=1. The time unit is �2 /�=1, and the length unit is �
=1.
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Since Pe
170, the hydrodynamic shear forces become
dominant over the thermal forces in the particle’s motion.
The initial configurations of the dispersed particles are ran-
domly distributed.

Figure 3 shows the time evolution of the MSD in the z
direction for several volume fractions, up to �=0.5. The
time is scaled by 1 / �̇. As the volume fraction is increased,
the MSD grows more rapidly in time due to the hydrody-
namic and direct interactions between the particles, resulting
in a increase in the slope of the MSD for a small strain �̇t
�O�10−1�. For high volume fractions 0.2���0.4, the dif-
fusive behavior is attained at a smaller strain �̇t�O�1� rather
than at �=0.002 as for a Brownian particle. The accelerated
Stokesian dynamics �ASD� for non-Brownian particles at
�=0.2 show that the diffusive region is attained at larger
strains than at least 10 �24�. Compared with these numerical
results, the onset of the diffusive region in the present simu-
lations is much faster. The time at which the diffusive region
is attained shifts to shorter times at higher volume fractions.

For the highest volume fraction �=0.5, however, we see
that the motion of Brownian particles is trapped within the
effective cages formed by the surrounding particles. This is
because the particles start to form stringlike objects in the

flow direction, and finally the whole system evolves into a
two-dimensional ordered structure in the plane perpendicular
to the flow, similarly to the flow-induced ordering commonly
observed in experiments �25–27� and by computer simula-
tions �28–30� under shear flow. In the present case with
Rep=0.125 and Pe�170, we found that the shear-induced
ordering occurs at the high volume fraction between �
=0.4 and 0.5.

The long-time diffusion coefficient Dz was calculated by
linearly fitting the data over the diffusion regions. The inset
of Fig. 3 shows the volume fraction dependence of Dz scaled
by �̇a2. The diffusion coefficient increases rapidly up to �
=0.3 and reaches a plateau at a volume fraction beyond �
�0.3. This behavior of Dz is remarkably different from that
at thermal equilibrium, where the diffusion coefficient de-
creases with increasing volume fraction. The enhancement of
the diffusion coefficient with increasing volume fraction is a
typical characteristic of shear-induced diffusion coefficients.
These results exhibit the same qualitative behavior as the
experimental results obtained for non-Brownian particles
�31–33�.

IV. CONCLUSION

In conclusion, the short-time motion of Brownian par-
ticles in an incompressible Newtonian fluid under shear was
examined by using a modified SPM in which external forces
are introduced to approximately form a simple shear flow
throughout the entire system with periodic boundary condi-
tions. The validity of the method was carefully examined by
comparing the present numerical results for the MSD with
the hydrodynamic analytical solution of the GLE of a single
Brownian particle in a simple shear flow. In the present
study, we aimed to modify the original SPM by incorporating
thermal fluctuations so that the modified SPM is valid for
�B� t, while other computational methods such as Brownian
dynamics and ASD, which are based on the LE that ignores
memory effects due to fluid motions, are valid only for �B
��D� t. Simulations were then performed for monodisperse
dispersions of repulsive spherical particles at volume frac-
tions ranging from �=0.002 to 0.50. We found that the MSD
in the vorticity direction grows rapidly in time and with in-
creasing particle volume fraction. At a strain �̇t�O�1�, the
diffusive region is attained for 0.2���0.4. The onset of
the diffusive region shifts to shorter times at higher volume
fractions. For �=0.5, however, the particles are no more
diffusive because of the shear-induced ordering. The diffu-
sion coefficient in the vorticity direction was obtained from
the long-time behavior of the MSD. For volume fractions of
up to 0.3, the diffusion coefficient rises rapidly with increas-
ing volume fraction. It then levels off for volume fractions
beyond 0.3.

10-4

10-3

10-2

10-1

100

101

102

10-2 10-1 100 101 102 103

0. 10
0. 20
0. 30
0. 35
0. 40

0

0.01

0.02

0.03

0.04

0.05

0 0.1 0.2 0.3 0.4

Φ = 0. 002

Φ γτDγτνγτB
...

Dz/γa
2.

D
/γ
a2.

zM
ea
ns

qu
ar
ed

isp
lac

em
en

t

.

0. 50

t 2

t

γt

FIG. 3. �Color online� The time evolution of the mean-square
displacement in the vorticity direction �z� for several volume frac-
tions � at kBT=0.07 and �̇=0.005. The Peclet number Pe
170 and
the particle Reynolds number Rep=0.125. The inset shows the vol-
ume fraction dependence of Dz scaled by �̇a2. The parameters for
both the particle and fluid are a=5, 	=2, 
p=1, 
 f =1, and �=1.
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