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We present a numerical method that consistently implements thermal fluctuations and hydrodynamic
interactions to the motion of Brownian particles dispersed in incompressible host fluids. In this method,
the thermal fluctuations are introduced as random forces acting on the Brownian particles. The
hydrodynamic interactions are introduced by directly resolving the fluid motions with the particle motion
as a boundary condition to be satisfied. The validity of the method has been examined carefully by
comparing the present numerical results with the fluctuation–dissipation theorem whose analytical form
is known for dispersions of a single spherical particle. Simulations are then performed for more
complicated systems, such as a dispersion composed of many spherical particles and a single polymeric
chain in a solvent.
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1. Introduction

The dynamics of solid particles dispersed in host fluids
is very complicated. Although computer simulations have
been extensively used as a tool to investigate those sys-
tems, obtaining meaningful results is not yet straightforward
even for the simplest case where the particles are mono-
disperse spheres and the host fluid is Newtonian. The main
difficulty comes from the consistent treatment of the so-
called hydrodynamic interaction (HI) between particles
mediated by fluid motions, which are induced by the
particle’s motion.

The mathematical expression for HI is greatly simplified
if the following assumptions are made: 1) the dispersed
particles are all spherical; 2) HI acting among particles is
pair-wise additive; and 3) the motions of the host fluid
instantaneously follows the motions of the particles (the
Stokes approximation). Then, the HI is expressed as a tensor
that is a function of the particle’s positions and velocities,
without explicitly dealing with the fluid motions. The Oseen
and the Rotne–Prager–Yamakawa (RPY) tensors are prob-
ably the most well known forms of such simplified HI
functions; the former neglects the size of the particle, while
the latter takes into account some corrections to the particle
size. The Stokesian dynamics (SD) method1) is a widely used
numerical method along the lines of solving the tensor
equations. It is based on the Langevin-type equations for
particles implementing the RPY tensor and the lubrication
correction. The latter is necessary when the distance between
particles is small compared to the particle radius.

Completely different numerical approaches have been
developed recently,2–6) where the motions of host fluids are
explicitly solved along with the motion of the particles so
that the HI is directly computed without using the three
assumptions described above. We refer those approaches as

direct numerical simulation (DNS) approaches. An apparent
benefit of using DNS approaches for particle dispersions is
that the long-time behavior of particle motions is reproduced
accurately. For example, the velocity autocorrelation func-
tion (VACF) of a fluctuating particle is expected to show a
non-exponential power-law relaxation — known as the hy-
drodynamic long-time tail — if the thermal fluctuations (TF)
are taken into account as well.

Recently, we also proposed an efficient DNS scheme
for particle dispersions called the Smoothed Profile (SP)
method,7,8) where the discontinuous boundaries between
particles and a fluid are smoothed out by using a continuous
profile function, thereby achieving greater computational
efficiency. The SP method has been successfully applied
to some problems, such as the electrophoresis of charged
colloidal particles;9) however, the effects of TF are ne-
glected. This is not a bad approximation for large/heavy
particles, but it is insufficient for particles whose size is on
the order of a micrometer or smaller; the coupling of TF and
HI becomes crucial in these systems. Owing to some new
experimental techniques that enable direct examination of
the properties of Brownian particles fluctuating in a host
fluid, several interesting phenomena have recently been
reported, including the non-diffusive behavior of Brownian
particles10) and the rotational-translation coupling of a pair
of spherical particles11) where the coupling of TF and HI
plays an essential role.

In the present study, our main goal is to implement TF
and HI consistently within a DNS framework for particle
dispersions. We aim to introduce TF to our original SP
method to achieve this end. Since theoretical analyses have
been well established for dilute dispersions, we first perform
simulations for a dilute dispersion composed of a single
spherical particle in a cubic box with the periodic boundary
condition. The numerical results for the VACF are then
compared with analytical solutions based on the fluctuation–
dissipation theorem. After the validity of the method has�E-mail: iwashita@cheme.kyoto-u.ac.jp

Journal of the Physical Society of Japan

Vol. 77, No. 7, July, 2008, 074007

#2008 The Physical Society of Japan

074007-1

http://dx.doi.org/10.1143/JPSJ.77.074007
http://dx.doi.org/10.1143/JPSJ.77.074007


been confirmed for this simple system, simulations are
performed for dense dispersions composed of many spher-
ical particles for which analytical solutions are unknown.
We furthermore performed DNS simulations to examine the
dynamics of a single polymeric chain fluctuating in a good
solvent. The time-correlation functions are calculated for
each Rouse mode of the chain and compared with the
predictions of the Rouse and Zimm models.

2. Simulation Method

We now present our implementation of TF based on the
Langevin type approach. The equation governing the solvent
with a density �f and a shear viscosity � is a modified
Navier–Stokes equation

�fð@tvþ v � rvÞ ¼ �rpþ �r2vþ �f� f p ð1Þ

with the incompressible condition r � v ¼ 0, where
vðx; tÞ; pðx; tÞ is the velocity and pressure field of the
solvent. A smooth profile function 0 � �ðx; tÞ � 1 distin-
guishes between fluid and particle domains, namely � ¼ 1 in
the particle domain and � ¼ 0 in the fluid domain. Those
domains are separated by thin interfacial regions whose
thickness is characterized by �. The body force � f p is
introdued to ensures the rigidity of particles and the non-slip
appropriate boundary condition at the fluid/particle inter-
face. The mathematical expressions of � and � f p are given
in earlier papers7,8) in detail.

We consider dispersions composed of Np spherical
particles with a radius a. The motion of the ith particle is
governed by Newton’s equations of motion with stochastic
forces:

Mi
_ViVi ¼ FH

i þ F
C
i þ G

V
i ;

_RRi ¼ Vi; ð2Þ

Ii � _��i ¼ NH
i þ G

�
i ; ð3Þ

where Ri, Vi, and �i are the position, translational velocity,
and rotational velocity of particles, respectively. Mi and Ii
are the mass and the moment of inertia, and FH

i and NH
i are

the hydrodynamic force and torque exerted by solvent on the
particle.7,8) FC

i is direct interparticle interaction such as
Coulombic or the Lennard-Jones potential. In the present
study, we used the truncated Lennard-Jones interaction:

ULJðrijÞ ¼
4�

�

rij

� �12

�
�

rij

� �6
" #

þ � ðrij < 21=6�Þ,

0 ðrij > 21=6�Þ,

8><
>:

ð4Þ

where rij ¼ jRi � Rjj. The parameter � characterizes the
strength of interactions, and � ¼ 2a represents the diameter
of particles. GV

i and G�
i are random forces and torques due

to TF, which has the following properties

hGn
i ðtÞi ¼ 0; hGn

i ðtÞG
n
j ð0Þi ¼ �

nI	ðtÞ	ij; ð5Þ

where the angle brackets denote taking an average over an
equilibrium ensemble. �n represents the noise intensity for
each degree of freedom of the translation (n ¼ V) and
rotation (n ¼ �) of the particles. Each noise intensity is
controlled so that the variance of the translational and
rotational velocity has a constant value; that is, hV2

i i ¼ C1

and h�2
i i ¼ C2, where C1 and C2 are constant numbers. The

time evolution of the noise intensity is described by �V ðt þ

�tÞ ¼ �V ðtÞe1�V2
i ðtÞ=C1 and ��ðt þ�tÞ ¼ ��ðtÞe1��2

i ðtÞ=C2 ,
where �t is the discrete time interval which plays a role
of thermostat.

The temperature of the system is defined by the diffusive
motion of the dispersed particles. The translational particle
temperature kBT

V is determined by the long-time diffusion
coefficient DV of a spherical particle in the Stokes–Einstein
relation kBT

V ¼ 6
�aDV where DV is obtained from com-
puter simulation. Similarly, the rotational particle temper-
ature kBT

� can be determined by the rotational diffusion
coefficient D�.

There are several advantages to the Langevin approach
compared with the fluctuating hydrodynamics approach, for
which TF is introduced in the Navier–Stokes equation as
stochastic stresses to be defined on Nd grid points of fluid
simulations. One important advantage is the computational
efficiency: while a Nd spatial grid requires generating OðNdÞ
random numbers for the fluctuating hydrodynamics, our
method requires OðNpÞ random numbers for a dispersion
composed of Np (� Nd) particles. Second, if we consider the
solvent as a complex fluid — with arbitrary constitutive
equation —, our method has another merit: in the fluctuating
hydrodynamics approach, the friction tensor for complex
fluids is required, but not here. Derivations of the friction
tensor for complex fluids often have theoretical difficulties,
and even if the friction tensor is obtained, there may be a
large computational cost.

3. Test of the Simulation Method

In order to test our simulation method, we consider the
translational motion of a particle dragged with a constant
external force F0 in a Newtonian fluid. With the force
turned on, a dragged particle and the solvent have a steady
state solution: the particle has a constant velocity along
x-direction until t ¼ 0. Then, at t > 0, the external force is
removed and the particle and solvent relax toward a rest state
due to dissipation.

Numerical simulation has been performed in three
dimensions with periodic boundary conditions. The lattice
spacing � is taken to be the unit of length. Other units
are defined so that we can set � ¼ 1 and �f ¼ 1 in eq. (1),
namely the units of time, mass, pressure are given by
�f�

2=�, �f�
3, and �2=�f�

2, respectively. For a spherical
particle, the radius a ¼ 5, the thickness � ¼ 2, and the
particle density �p ¼ 1 was used. In Fig. 1, we plotted
� _uuðtÞ=F0 for system size 323, 643, and 1283 where uðtÞ
denotes the velocity in the x-direction of a dragged particle.
The response function almost coincides with the analytical
solution based on a time-dependent friction12) when the
system size is larger. The analytical solution is provided
in detail in Appendix. For the long-time region, the
regression of the velocity shows a power-law decay Bt�3=2

where B ¼ 1=12�fð
�fÞ3=2 and the kinematic viscosity �f ¼
�=�f , which depends only on the hydrodynamic property of
the solvent.

A basic relation between the relaxation response of a
dragged particle and the VACF of a Brownian particle is the
fluctuation–dissipation theorem (FDT)

�
1

F0

duðtÞ
dt
¼
�V

3
hViðtÞ � Við0Þi; ð6Þ
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where hViðtÞ � Við0Þi=3 is the translational VACF for a
Brownian particle and �V ¼ 1=kBT

V . The relation holds that
the response function of a dragged particle with external
force F0 is equal to the VACF of a particle in thermal
equilibrium. Under the same computational conditions as the
relaxation experiment, the VACF in thermal equilibrium has
been calculated at the volume fraction � ¼ 0:002 and
system size 643. Figure 2 shows the VACF for a Brownian
particle. We can calculate the long-time diffusion coefficient
DV by the mean-square displacement of a Brownian particle;
that is, limt!1hjRiðtÞ � Rið0Þj2i ¼ 6DVt.

When simulating a Brownian particle with the HI, the
diffusion coefficient is affected by finite-size effects and
is given by DV ¼ kBT

V=6
�aKð�Þ where Kð�Þ represents
the effect of the periodic boundary condition.13,14) Taking
the finite-size correction into account, the diffusion coef-
ficient at infinite dilution is obtained as DV

inf ¼ DVKð�Þ.
The translational particle temperature is estimated to be
kBT

V ¼ 6
�aDV
inf ’ 0:83. In Fig. 2, �V hViðtÞ � Við0Þi=3 ap-

proaches to the analytical solution in the long-time
region, shows the power-law decay Bt�3=2, and gives the
response function of a dragged particle. In the short-time
region, a gap between simulation and the analytical solu-
tion is observed. The amplitude of a particle’s velocity is
related to the equipartition law of energy; that is, hV2

i i ¼
3kBT

V=Me where Me is the effective mass. The effective
mass can be obtained via a hydrodynamic calculation as
Me ¼ Mi þ 0:5m0, where m0 ¼ 4
�fa

3=3 is the mass of
fluid displaced by a spherical particle with radius a. In this
simulation, the effective mass is estimated to be Me ’
4:2Mi, which is notably greater than the hydrodynamic
effective mass. The disagreement may be due to the
influence of the artificial smoothed boundary used between
a particle and fluid.

Furthermore, we investigate Brownian particles in har-
monic potentials. The harmonic potential with a spring
constant k is introduced by adding Fex

i ¼ �kðRi � Req
i Þ,

where Req
i is its equilibrium position, to the equations of

motion of particles. The mean-square displacement of a

Brownian particle trapped in a harmonic potential is given
by:

lim
t!1
h�r2ðtÞi ¼

2kBT

k
; ð7Þ

where h�r2ðtÞi ¼ hjRiðtÞ � Rið0Þj2i=3. In the simulation for
the particle number Np ¼ 8, each particle is trapped at the
grids of the fcc lattice by harmonic potentials and the direct
interaction between particles is ignored. For k ¼ 0:5, 1.0,
2.0, and 4.0, the limt!1h�r2ðtÞik=2 is plotted in Fig. 3.
The result approaches kBT

V for k! 0 and is consistent with
the results obtained from the diffusion coefficient for a
Brownian particle.

We investigate the response function of the rotational
motion of a particle with a constant external torque N0 in a
similar fashion as the investigation of the particle’s trans-
lational motion. Figure 4 shows the relaxation response
� _!!=N0 where !ðtÞ denotes the particle’s rotational velocity.
The response function almost coincides with the analytical
solution, and a power-law decay Ct�5=2 is observed in the
long-time region where C ¼ 
=32�fð
�fÞ5=2. The FDT for
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the rotational velocity of a particle is also investigated. The
rotational velocity autocorrelation function h�iðtÞ ��ið0Þi=3
(RVACF) is given in Fig. 4, where �iðtÞ denotes the
rotational velocity of a Brownian particle. In the Green–
Kubo formula for the rotational velocity of the particle,
the rotational particle temperature is estimated to be
kBT

� ¼ 8
�a3D� ’ 1. The RVACF also shows a power-
law decay Ct�5=2 in the long-time region. The effective
moment of inertia Ie can be estimated by the value of the
same time correlation as Ie ’ 2:6Ii.

4. Applications

As a demonstration of a DNS incorporating TF of
particles, our method is applied to a many-particle system
and a dilute polymeric chain.

4.1 Many particles system
In Fig. 5, the translational VACF for each volume fraction

� is presented. As the volume fraction is increased, it is
found that the relaxation was more rapid than in low volume
fractions, and the power-law long-time tail of the VACF
gradually disappear in Fig. 5(a). Figure 5(b) shows that
for � � 0:4, the VACF has a negative overshoot, which
represents an oscillative motion of a tagged particle due
to a transient cage composed of surrounding particles.
Compared with Brownian dynamics without HI, the decay of
the correlation for a high volume fraction is much slower
with HI, probably due to the lubrication force between
particles.

4.2 A dilute polymeric chain in good solvent
The role of the HI is important in the dynamics of a dilute

polymeric chain in a good solvent, and the simple theoretical
model is known as the Zimm model.15) This model treats the
HI between beads as a hydrodynamic mobility matrix, such
as the Oseen tensor. Some groups have studied a single
polymeric chain with the HI using similar hybrid simulation

methods, and their results are in agreement with Zimm
theory.3,16,17) Here, we reexamine the validity of the Zimm
model using our present DNS method since it is supposed to
be more accurate than other methods used previously.

As a model of a polymeric chain, we study a bead-spring
model with a truncated Lennard-Jones potential and a
finitely extensible non-linear elastic (FENE) potential:18)

UFðrÞ ¼ �
1

2
kcR

2
0 ln½1� ðr=R0Þ2�; ð8Þ

where kc ¼ 30�=�2, R0 ¼ 1:5�, and r is the distance
between the neighboring beads. The position vector of a
bead is described by RnðtÞ with n ¼ 0; 1; . . . ;Nch � 1 where
Nch denotes the total number of beads.

The static property of a polymeric chain is characterized
by the static exponent �, which is defined as hR2

Gi / N2�
chb

2

for large Nch, where RG is the radius of gyration and b is the
average bond length. The static exponent is related to the
size of a polymeric chain, which is � ¼ 0:5 for a Gaussian
chain and � ’ 0:6 for a self-avoided chain. The static
exponent � of a polymeric chain can be calculated via the
static structure factor SðkÞ. Figure 6 displays the static
structure factor for the bead numbers Nch ¼ 10, 15. In the
range of R�1

G � k � b�1, SðkÞ obeys the scaling relation
SðkÞ / k�1=� and can determine the static exponent � 	 0:62

by fitting a power law to our data.
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To analyze the relaxation dynamics of a polymeric chain,
the real space motion is decomposed into a set of the Rouse
modes (p ¼ 0; 1; . . . ;Nch � 1),

XpðtÞ ¼
1

Nch

XNch

n¼1

RnðtÞ cos½ðn� 1=2Þp
=Nch�: ð9Þ

Within the approximations of the Zimm theory, the
autocorrelation function of the Rouse mode decays expo-
nentially as hXpðtÞ � Xpð0Þi=hX2

pi ¼ expð�t=
pÞ, where 
p
denotes the relaxation time of the Rouse mode. The Zimm
theory predicts the relation between the static exponent �
and the relaxation time 
p. The prediction is 
p 	 p�3� for
the continuous model, and 
p 	 p2�3� sin�2ðp
=2NchÞ for
the discrete model.

Figure 7 shows the normalized autocorrelation function of
the Rouse mode for Nch ¼ 10. The relaxation times are
obtained by a fitting in the exponential short-time regime
t 2 ½50 : 1000�. Figure 8 shows the mode (p-) dependence of
the relaxation time. By fitting for p � 5, the p-dependence
of the relaxation time is estimated as 
p 	 p�1:87. In
Fig. 8, the prediction of the discrete Zimm model for the
p-dependence of 
p is also plotted using � obtained from
SðkÞ. The numerical results show a good agreement with the
prediction of the Zimm model.

5. Summary

We have developed a numerical method for consistently
implementing thermal fluctuations and hydrodynamic inter-
actions into models of the motions of Brownian particles
dispersed in incompressible host fluids. We represented the
thermal fluctuations by random forces acting on Brownian

particles and the hydrodynamic interactions by directly
resolving the fluid motions. The validity of the method has
been examined carefully by comparing the present numer-
ical results with the fluctuation–dissipation theorem for a
dispersion of a single spherical particle. Simulations are
then performed for dispersions of many spherical particles,
and also for a polymeric chain in a fluid. In the former case,
we found that the hydrodynamic long-time tail in the
VACF — clearly observed for a single particle dispersion —
becomes weak with increasing volume fraction of the
particles. In the latter case, we found that our numerical
results coincide quite well with the theoretical predictions of
the Zimm model.

Appendix: A Dragged Particle with the Time-Dependent Friction

From the hydrodynamics, we can obtain the time-dependent friction12)

�ðtÞ ¼ � 6
�auðtÞ þ
2

3

�fa

3 _uuðtÞ þ 6a2 ffiffiffiffiffiffiffiffiffiffi

��f

p
Z t

�1
ds

_uuðsÞffiffiffiffiffiffiffiffiffiffi
t � s
p

� �
: ðA:1Þ

The first term is the standard Stokes resistance. The second term represents the additional mass, which is related to the
acceleration of the particle. The third term represents the memory effect, which addresses the temporal decay of the fluid’s
momentum.

The equation of motion of a dragged particle with a time-dependent frictional force � and a constant external force F0 is

 1

 0 100 200 300 400 500 600 700 800 900

<
 X

p
p

p
(t

)·
 X

(0
)>

/<
 X

 2  (
0)

>

t

p=1
p=2
p=3
p=4
p=5
p=6
p=7
p=8
p=9

Fig. 7. (Color online) Normalized autocorrelation functions of the Rouse

mode Xp for various mode p. The chain length is Nch ¼ 10.
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described by M _uuðtÞ ¼ �ðtÞ þ F0, where M is the mass of a particle. After the particle has reached a steady state (a constant
velocity), the external force is removed. Then, the regression of the velocity can be written as

duðtÞ
dt
¼ �

F0

Meff

Z 1
0

dy




�0
ffiffiffi
y
p

exp½�yðjtj=
BÞ�
j1� yj2 þ �2

0y
; ðA:2Þ

where �0 ¼ ð9�f=ð2�p þ �fÞÞ1=2, Meff ¼ M þ 0:5m0, �p the particle density, and 
B ¼ M=6
�a. From the fluctuation–
dissipation relation ½1=ð3kBT

V Þ�hViðtÞ � Við0Þi ¼ �ð1=F0ÞduðtÞ=dt, a hydrodynamic velocity autocorrelation function of a
Brownian particle can be calculated exactly.

Similarly, the regression of the rotational velocity ! of a spherical particle with a moment of inertia I can be written as

d!ðtÞ
dt
¼ �

N0

8
�a3

1


f

Z 1
0

dy

3

exp �

yt


f

� �
y3=2�

1�
�

r


f
þ

1

3

�
y

�2

þ y

�
1�


r


f
y

�2

2
664

3
775; ðA:3Þ

where N0 is a constant external torque, 
f ¼ a2=�f and 
r ¼ I=8
�a3.
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