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Abstract. Previously, we have proposed a direct simulation scheme for colloidal dispersions in a Newtonian
solvent (Phys. Rev. E 71, 036707 (2005)). An improved formulation called the “Smoothed Profile (SP)
method” is presented here in which simultaneous time-marching is used for the host fluid and colloids.
The SP method is a direct numerical simulation of particulate flows and provides a coupling scheme
between the continuum fluid dynamics and rigid-body dynamics through utilization of a smoothed profile
for the colloidal particles. Moreover, the improved formulation includes an extension to incorporate multi-
component fluids, allowing systems such as charged colloids in electrolyte solutions to be studied. The
dynamics of the colloidal dispersions are solved with the same computational cost as required for solving
non-particulate flows. Numerical results which assess the hydrodynamic interactions of colloidal dispersions
are presented to validate the SP method. The SP method is not restricted to particular constitutive models
of the host fluids and can hence be applied to colloidal dispersions in complex fluids.

PACS. 47.11.-j Computational methods in fluid dynamics – 82.70.-y Disperse systems; complex fluids –
82.20.Wt Computational modeling; simulation

1 Introduction

Interparticle interactions in colloidal dispersions mainly
consist of thermodynamic potential interactions and hy-
drodynamic interactions [1–3]. Whereas the former in-
teractions occur in both static and dynamic situations,
the latter occur solely in dynamic situations. Although
thermodynamic interactions have been studied extensively
and summarized as a concept of the effective interac-
tion [4], the nature of dynamic interactions is poorly un-
derstood. Since the hydrodynamic interaction is essen-
tially a long-range, many-body effect, it is extremely diffi-
cult to study its role using analytical methods alone. Nu-
merical simulations can aid the investigation of the fun-
damental role of hydrodynamic interactions in colloidal
dynamics.

In recent decades, various simulations for particu-
late flow have been developed for most simple situations
in which the host fluid is Newtonian [5–13]. However,
these schemes cannot necessarily be applied to problems
with non-Newtonian host fluids or solvents with inter-
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nal microstructures, which are practically more important
cases. Hydrodynamic simulations of ions and/or charged
colloids have been proposed by making use of some of
the above schemes [14–19]. Nonetheless, the tractability
and/or physical validity of their modeling remain contro-
versial. In reference [14], in solving the motion of the ionic
solutes, the solvent hydrodynamic interaction was incor-
porated by Rotne-Pragar-Yamakawa–type mobility ten-
sor, which accounted for a long-range part of pair inter-
action. This scheme misses many-body and/or near-field
hydrodynamic interactions between the solutes and sur-
faces, which can have an effect on the behavior of ions
near surface. In reference [15], the computational mesh
was arranged to express round shape of a colloidal parti-
cle and the boundary value problem of the solvent contin-
uum equations was solved based on the irregular mesh. For
applying this scheme to many-body system, inaccessible
computational resources is inevitable. In references [16–
19], they adopted the lattice Boltzmann (LB) method for
explicitly solving the solvent hydrodynamics. Although
the LB method has many advantages for solving large sys-
tems, compared to the standard discretization schemes,
the applicability to various constitutive equations for the
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complex fluids other from the Newtonian fluids is unveiled.
Concerning the interaction between colloidal particles and
the solvent, authors in references [16,17], arranged finite
interaction points on the surface of the colloids on which a
frictional coupling was assumed. In this coupling scheme,
friction parameters and the number of the interaction
points were determined phenomenologically and a theoret-
ical basis to determine the parameters in general systems
was not clearly stated.

In this article, we propose a direct simulation scheme
for colloidal dispersions which is applicable to most consti-
tutive models of the host fluids. We call it the “Smoothed
Profile (SP) method” since the original sharp interface
between the colloids and solvent is replaced with an effec-
tive smoothed interface with a finite thickness [7,20]. We
formulate a computational method to couple the particle
dynamics and hydrodynamics of the solvent. A fixed grid
is used in both the solvent and the particle domains. Intro-
duction of a smoothed profile makes it possible to realize
stable and efficient implementation of our scheme. The nu-
merical implementation for Newtonian solvents and elec-
trolyte solutions as specific examples of multi-component
fluids is outlined. Various test cases which verify the SP
method and assess the hydrodynamic interactions are pre-
sented.

2 Dynamics of a multi-component solvent
and colloids

2.1 Hydrodynamics of multi-component fluids

We first give a brief description of multi-component fluid
equations, looking at electrolyte solutions as a specific ap-
plication. Consider N (possibly ionic) solute species that
satisfy the law of conservation for every concentration, Cα,
of the α-th species:

∂tCα + ∇ · Cαvα + ∇ · gα = 0, (1)

where vα is the velocity of the α-th solute and gα is a
random current. Since the inertial time scales of the so-
lute molecules are extremely small, the velocity of the α-th
solute can be decomposed into the velocity of the solvent
v and the diffusive current arising from the chemical po-
tential gradient ∇μα as

vα = v − Γα∇μα, (2)

where ΓαkBT is the diffusivity of the α-th ion, kB is
the Boltzmann constant and T is the temperature. The
random current should satisfy the following fluctuation-
dissipation relation [21]:

〈gα,i(x, t)gβ,j(x′, t′)〉 =

2(kBT )2Γαδαβδijδ(x − x′)δ(t − t′). (3)

Here, for the sake of simplicity, we do not deal with the
cross diffusion of different solutes. The conservation of mo-
mentum implies that the velocity of solvent follows the

Navier-Stokes equation of incompressible flow with the
source term from solutes:

∇ · v = 0, (4)

ρ (∂t+v · ∇) v=−∇p+η∇2v−
∑
α

Cα∇μα + ∇ · s, (5)

where ρ is the total mass density of the fluid, p is the pres-
sure, η is the shear viscosity of the fluid, and s is a random
stress satisfying the fluctuation-dissipation relation [21]:

〈sik(x, t)sjl(x′, t′)〉 =

2kBTη(δijδkl + δilδkj)δ(x − x′)δ(t − t′). (6)

The above set of equations is closed when a set of chem-
ical potentials {μα} is given, and describes the dynamics
of a multi-component fluid. For the specific application of
an electrolyte solution, we consider the Poisson-Nernst-
Planck equation for the chemical potential

μα({C1, . . . , CN})=kBT log Cα+Zαe(Φ−Eext · x), (7)

ε∇2Φ = −ρe, (8)

This equation describes the Poisson-Boltzmann distribu-
tion for ions at equilibrium, where Zα is the valence of the
α-th ion, e is the elementary charge, Φ is the electrostatic
potential, Eext is the external field, ε is the dielectric con-
stant of the fluid, and ρe is the charge density field. This
set of equations corresponds to the electrokinetic equa-
tions which appear in standard textbooks [3].

2.2 Colloids in electrolyte solutions

The colloid dynamics are maintained by the force exerted
by the solvent. Consider monodisperse spherical colloids
with a radius a, a mass Mp, and a moment of inertia
Ip. Momentum conservation between the fluid and the
i-th colloid implies the following hydrodynamic force and
torque:

F H
i =

∫
(dSi · σ), NH

i =
∫

(x − Ri) × (dSi · σ), (9)

where Ri is the center of mass,
∫

dSi(. . . ) indicates the
surface integral over the i-th colloid, and σ is the stress
tensor of the fluid. In terms of the electrokinetic equations,
the stress reads as

σ = −pI + σ′ + σst + s, (10)

in which σ′ = η(∇v+(∇v)T ) is the dissipative stress, and
σst = ε{EE − (|E|2/2)I} is the Maxwell stress for the
electric field E = −∇Φ+Eext, where I is the unit tensor.
The evolution of the colloids follows Newton’s equations:

Ṙi = V i, (11)

MpV̇ i = F H
i + F c

i + F ext
i , (12)

Ip · Ω̇i = NH
i + N ext

i , (13)
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where F ext
i and N ext

i are the external force and torque,
respectively, and F c

i is the force arising from the core po-
tential of the particles, which prevents the colloids from
overlapping. Hereinafter, the soft-core potential of the
truncated Lennard-Jones potential is adopted for F c

i . For
the charged-colloid system specifically, the buoyancy is in-
cluded in the term F ext

i , and the external field on the
colloids is accounted for by F H

i .
Having colloidal particles with a finite volume pro-

vides the relevant boundary conditions to the hydrody-
namic equations. For the solvent velocity, a no-slip con-
dition is assigned, such that v = V i + Ωi × ri, with
ri = x−Ri for the i-th colloid. For the concentration field,
a no-penetration condition is assumed, giving n·∇μα = 0,
where n represent the unit normal to the surface of the
colloids. Coupling the hydrodynamics of the solvent with
the dynamics of the colloids defines the moving-boundary-
condition problem above. The usual numerical techniques
of partial differential equations are hopeless in dealing
with the dynamical evolution of many colloids, since the
sharp interface at the surface of the colloids moves and
henceforth the mesh points at which the boundary con-
dition is assigned vary with each discrete time step. The
moving boundary condition leads to huge computational
costs.

In contrast, the SP method formulates an efficient
scheme for this kind of moving-boundary-condition prob-
lem, and incurs the same level of computational cost as
is required for solving a uniform fluid. The typical com-
putational costs for the fluid and particles are assumed to
scale to their degrees of freedom. In the SP method, reg-
ular mesh, but not body-fitted mesh, can be used, which
indicates that the inclusion of the dispersed particle phase
does not induce the increase of the grids. In d-dimensional
system, we assume that discretized space contains Nd

grids and the variables of the fluid phase are linked to
the grids. Np particles are dispersed in the system and
their volume scales to Npa

d. The number of the particles
are at most Npa

d < (NΔx)d, where Δx is the lattice spac-
ing, which results in Np/N

d < (Δx/a)d. This inequality
indicates that the computational costs for the dispersed
phase tracking is at largest (Δx/a)d times for the fluids.
In the typical case of a/Δx = 5, the fraction of the compu-
tational costs for the particles roughly estimated less than
several percent, thus most of the computation should be
for solving the uniform fluid.

3 Computational algorithm

In the SP method, quantities are defined over the entire
domain, which consists of the fluid domain and the particle
domain. To designate the particle domain, we introduce
a concentration field for the colloids, given as φ(x, t) =∑Np

i=1 φi(x, t), where φi ∈ [0, 1] is the profile field of the
i-th particle, which is unity at the particle domain, zero
at the fluid domain, and which has a continuous diffuse
interface of finite thickness ξ at the interface domain. With
the field φ, the total velocity field and concentration fields

of the solutes are defined as

v = (1 − φ)vf + φvp, (14)
Cα = (1 − φ)C∗

α, (15)

where (1 − φ)vf represents the velocity field of the fluid,
and φvp(x, t) =

∑Np

i=1 φi(x, t)[V i(t)+Ωi(t)×ri(t)] is the
velocity field of the colloids. The auxiliary concentration
field C∗

α is introduced, which can have a finite value in the
particle domain, whereas Cα, the physical concentration
field, is forced to be zero through multiplication by (1−φ).

The advection of φ is solved via Ṙi = V i and by map-
ping {R1, . . . ,RNp

} to φ. Henceforth, the volume of the
fluid and/or the solid is strictly conserved and no numer-
ical diffusion of φ occurs. In the SP method, the funda-
mental field variables to be solved are taken as the total
velocity v rather than vf , and C∗

α rather than Cα. This
choice of variables yields great benefits in terms of allowing
efficient and stable time evolution. The evolution equation
of v is derived based on momentum conservation between
the fluid and the particles, and the rigidity of the parti-
cle velocity field vp. For the solute concentration, Cα and
C∗

α differ in terms of whether they exhibit abrupt varia-
tion at the interface of the colloids or not: especially for
ξ → 0, Cα has discontinuity at the solid-fluid interface,
but C∗

α should not. Since Cα exhibits abrupt variation in
the spatial scale of ξ, in order to solve its advection, it is
necessary to stabilize the evolution over time and to pre-
vent numerical diffusion and penetration of Cα into the
particle domain. Compared with Cα, auxiliary concentra-
tion C∗

α is independent of the abrupt variation arising from
(1 − φ), and a finite value of C∗

α in the particle domain is
allowed. Therefore, it is numerically much easier to solve
the advection equation of C∗

α than Cα.

3.1 Discretization in time

The time-discretized evolution equations are derived as
follows. To simplify the presentation, we neglect random
currents. As an initial condition at the n-th discretized
time step, the position, velocity, and angular velocity of
the colloids, {Rn

i ,V n
i ,Ωn

i } (i = 1, . . . , Np), are mapped
to φn and φnvn

p and the following conditions are set:
vn = (1 − φn)vf + φnvn

p , satisfying the incompressibil-
ity condition on the entire domain, ∇ · vn = 0, and
C∗,n

α , satisfying the charge neutrality condition,
∫

dx(1−
φn)

∑
α ZαeC∗,n

α +
∫

dx |∇φ| eσe = 0, where |∇φi|eσe rep-
resents the surface charge distribution of the colloids. The
current for the auxiliary concentration field is defined as

C∗
αvα = C∗

αv + (I − nn) · C∗
α (−Γα∇μα) , (16)

where n(x, t) is the unit surface-normal vector field which
is defined on the interface domain with a finite thickness ξ.
In this definition of the current, the no-penetration condi-
tion is directly assigned. The auxiliary concentrations are
advected by this current as

C∗,n+1
α = C∗,n

α −
∫ tn+h

tn

ds∇ · C∗
αvα, (17)
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where h is a time increment, and tn = nh is the n-th
discretized time. The total velocity field is updated using
a fractional step approach. First, the advection and the
hydrodynamic viscous stress are solved,

v∗ = vn +
∫ tn+h

tn

ds∇ ·
[
1
ρ

(−pI + σ′) − vv

]
, (18)

Rn+1
i = Rn

i +
∫ tn+h

tn

dsV i, (19)

with the incompressibility condition, ∇ · v∗ = 0. Along
with the advection of the total velocity, the particle po-
sition is updated using the particle velocity. The electro-
static potential for the updated particle configuration is
determined by solving the following Poisson equation,

∇2Φn+1 = −ρn+1
e /ε, (20)

with the charge density field, ρn+1
e = (1 −

φn+1)
∑

α ZαeC∗,n+1
α + |∇φn+1|eσe. The momentum

change as a result of the electrostatic field is solved as

v∗∗ = v∗ − hρn+1
e ∇Φn+1. (21)

At this point, the momentum conservation is entirely
solved for the total velocity field. The rest of the updating
procedure applies to the rigidity constraint on the particle
velocity field.

The hydrodynamic force and torque on the colloids
exerted by the fluid are derived by assuming momentum
conservation between the colloids and the fluid. The time-
integrated hydrodynamic force and torque over a period
h are equal to the momentum change over the particle
domain:

[∫ tn+h

tn

dsF H
i (s)

]
=

∫
dxρφn+1

i

(
v∗∗ − vn

p

)
, (22)

[∫ tn+h

tn

dsNH
i (s)

]
=

∫
dx

[
rn+1

i ×ρφn+1
i

(
v∗∗−vn

p

)]
. (23)

With this and other forces on the colloids, the particle
velocity and angular velocity are updated as

V n+1
i = V n

i + M−1
p

[∫ tn+h

tn

dsF H
i

]

+ M−1
p

∫ tn+h

tn

ds
(
F c

i + F ext
i

)
, (24)

Ωn+1
i = Ωn

i + I−1
p ·

[∫ tn+h

tn

dsNH
i

]

+ I−1
p ·

∫ tn+h

tn

dsN ext
i . (25)

The resulting particle velocity field φn+1vn+1
p is directly

enforced on the total velocity field as

vn+1 = v∗∗ +

[∫ tn+h

tn

dsφfp

]
, (26)

[∫ tn+h

tn

dsφfp

]
= φn+1

(
vn+1

p − v∗∗) − h

ρ
∇pp, (27)

where φfp represents the force density field which im-
poses the rigidity constraint on the total velocity field.
The pressure due to the rigidity of the particle is deter-
mined by the incompressibility condition, ∇ · vn+1 = 0,
which leads to the following Poisson equation for pp, viz.,
∇2pp = ρ

h∇ · [φn+1(vn+1
p − v∗∗)]. We note again that, on

the l.h.s. of equations (22, 23), and (27), the integrands
F H

i , NH
i , and φfp are not explicitly calculated but their

time integrals are solved. In other words, the solid-fluid
interactions are treated in the form of the momentum
change, namely, momentum impulse.

3.2 Restriction on a time increment

To enable spatial discretization of the hydrodynamic equa-
tions, any standard scheme, such as the finite-difference
method, finite-volume method, finite-element method,
spectral method, lattice Boltzmann discretization and so
forth, can be used. The SP method basically defines a cou-
pling scheme between the hydrodynamic equations for the
solvent and the equations for the discrete colloids. Since
the treatment of the rigidity constraint of the particle ve-
locity does not introduce an additional time scale, the re-
striction to a time increment h is the same as that in uni-
form fluid cases. This is advantageous as compared to the
methods adopted in references [7,22], where a large viscos-
ity or elasticity is used for the velocity over the particle
domain. For comparison, in the Fluid Particle Dynam-
ics (FPD) method [7], the large viscosity is introduced
for the fluid particle ηc (� η) to realize the rigidity con-
straint. This means that the required time increment for
FPD should be very small, i.e., η/ηc(� 1), as compared
with that used in the SP method.

A similar discussion on the restriction of the no-
penetration condition in the advection-diffusion equation
of the solutes can be outlined. One of the simplest treat-
ments of the no-penetration condition in the particle do-
main is the penalty method adopted in references [23,
24], in which an artificially large potential barrier is intro-
duced for the solutes in the particle domain. The artificial
potential should at least be larger than the other chem-
ical potentials in order to realize no-penetration of the
solutes. This restriction means that the artificial poten-
tial requires a smaller h. Although this strategy is phys-
ically consistent, it is numerically inefficient. In contrast,
in the SP method the advection-diffusion requires no addi-
tional time scale for the inclusion of colloids since the no-
penetration condition for the solutes is directly assigned to
the solute current in the finite interface domain. From the
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Fig. 1. Snapshot of a sedimenting colloid of radius a = 4Δx.
The arrows indicate the velocity field.
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Fig. 2. Drag coefficient of a periodic array of spheres in steady
Stokes flow as a function of volume fraction ϕ solved using the
SP method as compared with the analytic result [25] (solid
line) and low-ϕ asymptotics [26] (dashed line). In this case,
ξ is set to unity in the lattice unit. The range of the volume
fraction ϕ was obtained by changing the radius a from 4 to
15.5 for a lattice size Δx with L = 32Δx fixed.

above discussion, we can see that the SP method provides
us with much higher numerical efficiency than other meth-
ods proposed for direct numerical simulation of colloidal
dispersions.

4 Results and discussions

4.1 Stokes drag on a periodic array of spheres in a
Newtonian fluid

To validate the SP method quantitatively, we measured
the steady-state drag force on a periodic array of spheres
in a Newtonian solvent. The velocity distribution around
the colloid is depicted in Figure 1. In general, flow around
a colloid occurs as creep-flow with a Reynolds number of
Re = aV/ν � 1. Figure 2 shows the drag coefficient Q(ϕ),

Fig. 3. (Color online) Snapshot of two approaching colloids
of radius a = 4Δx. The arrows indicate the velocity field. The
color map around the colloids represents the pressure distri-
bution: a change in color from red to blue corresponds to a
change from high to low pressure.

defined as
FD = −6πηaV

Q(ϕ)
, (28)

where ϕ = (4/3)π(a/L)3 is the volume fraction in a cubic
box of volume L3. The effect of the boundary condition
extends very far in creep-flow, as the higher the volume
fraction, the larger the drag. Comparison of the drag co-
efficient given by the SP method with the analytic result
from the Stokes equation by Zick and Homsy [25] verifies
the validity of the SP method over the entire range of ϕ.

4.2 Lubrication interaction in a finite system

One of the most important effects of solvent flow is the
lubrication interaction between nearby particles with rela-
tive motions. The exact solution of the Stokes equation for
two isolated spheres has been found [27] and has provided
much insight into the basic physics of colloidal suspen-
sions. However, its application to many-particle systems
through the method of pairwise addition requires care.
For quantitative prediction of the rheology of concentrated
suspensions, numerical results have identified many differ-
ences, whether the shear mode of the lubrication interac-
tion is included or not [28,29]. There exists a fundamental
ambiguity in the application of the analytic expression of
two isolated spheres to a many-particle system in the finite
domain using pairwise addition.

We computed the squeeze lubrication interaction be-
tween two approaching spheres in a finite system. The
velocity and pressure distributions are depicted in Fig-
ure 3. Figure 4(a) shows the normalized approach veloc-
ity of a pair of particles versus the gap h between two
equal spheres solved by the SP method as compared with
other theories. The two asymptotic solutions at h � a
and h � a are from the exact solution of the isolated
pair [27] and Rotne-Prager-Yamakawa tensor [30], respec-
tively. The Stokesian Dynamics (SD) solution [5] is based
on an interpolation of these two asymptotic solutions.
The simulation result nicely reproduces not only the two
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Fig. 4. (a) Relative velocity between two approaching spheres
versus the gap between the sphere surfaces (symbols). The
slight oscillations in the SP results are a result of the finite
lattice spacing. In this case, ξ is set to unity in the lattice
unit. Theoretical curves are shown for far-field asymptotics us-
ing the Rotne-Prager-Yamakawa tensor (dotted line) [30], a
near-field exact solution (dashed line) [27], and Stokesian Dy-
namics (solid line) [5]. (b) The two coefficients representing the
squeeze interaction (scaled to those at infinite dilution) versus
volume fraction. γ1 (square) represents the one-body drag and
γ2 (circle) represents the two-body squeeze interaction due to
relative motion.

asymptotic regimes but also the crossover which occurs at
h/a ∼ 0.7. It is found that SD underestimates the mobility
in this intermediate regime. This underestimation is due
to the approximation adapted in SD in which the compo-
nents are just asymptotic two-body solutions. The result
confirms the relevance of our simulation, thus demonstrat-
ing the importance of the hydrodynamic interaction in a
finite system.

We discuss the dependence of the lubrication interac-
tion on the volume fraction. By assuming the functional
form |V1−V2|/F = 1/(Γ1(ϕ)+2Γ2(ϕ)/h) from lubrication
theory, where Γ1(ϕ) = 6πηaγ1(ϕ) is the one-body drag
coefficient and Γ2(ϕ) = (3πηa2/2)γ2(ϕ) is the squeeze co-
efficient, the effect of the volume fraction is represented
by γ1(ϕ) and γ2(ϕ). These friction coefficients can be ex-
tracted by fitting the curve of Figure 4(a) for each ϕ. The
reduced coefficients γ1 and γ2 are plotted in Figure 4(b)
as a function of the volume fraction. The solid line in
Figure 4(b) is from Figure 2. Although a periodic array
of spheres exhibits different flow geometry from the case
of two approaching spheres, the volume fraction depen-
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Fig. 5. Non-dimensionalized zeta potential as a function of
the inverse Debye length κa and the valence of the colloid Z
computed using the semi-analytic formula of Ohshima-Healy-
White [37]. The dotted lines are guides to the eye.

dence of γ1 of the two cases is comparable. Moreover, the
squeeze coefficient γ2 is found to be a decreasing function
of the volume fraction. In other words, the squeeze mode
is most enhanced at infinite dilution. In the literature [2],
it is pointed out that the squeeze coefficient is at least
smaller than that of the exact solution for isolated pairs.
These results further validate the SP method.

Although the SP method itself is an efficient scheme as
a direct simulation of utility in constructing a more coarse-
grained model for suspensions, such as in dissipative parti-
cle dynamics, constitutive modeling, etc., the calculation
by direct simulation also gives fundamental information
about the hydrodynamic interactions.

4.3 Sedimenting charged colloids

As an example of the specific application of the method to
a multi-component fluid, we compute the hydrodynamic
drag for sedimenting charged colloids in the absence of
an external electric field. In this case, the sedimenting
charged colloids induce a flow that determines a charge
distribution which differs from the equilibrium case [3,31].
The skewed ion distribution gives rise to polarization in
the electric double layer. Moreover, double-layer deforma-
tion induces an electro-osmotic flow, which makes the flow
around a charged colloid different from that of a neutral
colloid.

In this simulation, a periodic array of charged col-
loids in a 1:1 electrolyte solution under gravity was com-
puted. We specify the valence of the colloids first, and the
counterion in the host fluid assures the charge neutrality
of the whole system. The bulk concentrations of the 1:1
electrolyte C̄± were determined by specifying the Debye
length κ−1 = {4πλB(C̄+ + C̄−)}−1/2. The Bjerrum length
4πλB = e2/εkBT was set to unity and ξ was chosen as
twice the lattice unit to resolve the surface charge distri-
bution, which is represented by |∇φ|. For simplicity, the
counterion and coion were set to the Schmidt number 0.5,
whose choice did not affect the qualitative aspect of the
following results but only control the transient time to the
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Fig. 6. Sedimentation velocity of a periodic array of colloids
of different valences Z in electrolyte solutions as a function
of the inverse Debye length κa. The ordinate is reduced by
the sedimentation velocity of neutral colloids at the same vol-
ume fraction of 0.008 (a = 4Δx, L = 32Δx). The effective
volume fraction including the electric double-layer defined by
(4/3)π{(a+κ−1)/L}3 was chosen to be less than unity. Dotted
lines are guides to the eye.

steady state. The Debye length was chosen so that the ef-
fective radius of the double layer a+κ−1 was smaller than
half of the system size L/2. In order to clarify the situ-
ation in terms of a typical colloid science parameter, the
non-dimensional zeta potential eζ/kBT is shown in Fig-
ure 5, which should be determined by specifying κa and
the valence of the colloid Z. The corresponding dimen-
sion of the zeta potential ζ for this simulation at 20 ◦C is
of the order of 10mV. We computed the linear response
regime for gravitational driving to observe the effect of
electro-osmosis on the hydrodynamic drag.

We plot the sedimentation velocity scaled by that of a
neutral colloid as a function of the inverse Debye length
scaled by the radius of colloid in Figure 6. As the valence
of the colloid or the zeta-potential increases, the sedimen-
tation velocity reduces to that of the neutral colloid. The
hydrodynamic drag of the electrolyte solution was most
enhanced when the Debye length was comparable to the
size of the colloids. These facts qualitatively agree with
the analytic result at infinite dilution [32,33].

The charge density and the velocity distributions when
κa = 1 and Z = 1000 are depicted in Figure 7. In this case,
the charge distribution was largely uniform and thus the
counteracting electrostatic effect of the double-layer polar-
ization does not have much effect. Therefore, the enhanced
electrohydrodynamic drag can mainly be attributed to the
friction between the solvent and the ions. Because of this
electrohydrodynamic coupling of the transfer in momen-
tum, the solvent-flow pattern around the colloid was mod-
ified from the case of a neutral colloid. As a result, the vis-
cous drag on the colloid was enhanced. This mechanism
of enhanced viscous drag by electro-osmotic flow generally
exists in colloids in electrolyte solutions.

It has been known that in an infinitely dilute system
(or the thin double-layer limit) the velocity decays as r−3

in the region of κr � 1 in contrast to the r−1 decay of
an infinitely dilute neutral system, where r is the radial

Fig. 7. (Color online) Snapshot of a sedimenting charged col-
loid when κa = 1 and Z = 1000. The arrows indicate the
velocity field. The color map around the particle represents
the charge density field: a change in color from red to blue
corresponds to a change from high to low charge density.

distance from the center of the colloid [34,35]. However,
in the system size adapted in our simulation this asymp-
totic regime was not reached. For κr � 1, we have the
screened hydrodynamics regime, where the velocity de-
cays as v ∝ e−κr/r [35]. These factors account for why the
flow patterns in Figures 1 and 7 resemble one another. In
other words, the electrohydrodynamic interaction should
be a pronounced effect in small finite systems as is seen in
neutral systems.

We note that, at a finite volume fraction and in the
range of the Debye length, the charged colloid dynamics
could be effectively assessed through the SP method. Fur-
ther application of the SP method to electrophoresis of
concentrated suspensions is reported elsewhere [36].

5 Conclusions

We have presented a new simulation scheme for colloidal
dispersions in a solvent of a multi-component fluid, which
we call the “Smoothed Profile (SP) method”. The SP
method improves and extends a previous method proposed
by the authors [38,20,39].

The description of the colloidal systems is based on
the Navier-Stokes equation for the momentum evolution
of the solvent flow, the advection-diffusion equation for
the solute distribution, the rigid-body description of col-
loidal particles, with dynamical coupling of all these el-
ements. Based on momentum conservation between the
continuum solvent fluid and the discrete rigid colloids,
the time-integrated hydrodynamic force and torque are
derived. This expression of the mechanical coupling be-
tween a fluid and particles is well suited for numerical sim-
ulations in which differential equations are discretized in
time. With this formulation relating the solid-fluid inter-
action, standard discretization schemes for uniform fluids
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are utilized as is; no special care is needed for the solid-
fluid boundary mesh. Since the hydrodynamic interaction
is solved through direct simulation of the solvent fluid, the
many-body effect can be fully resolved.

The utility of the SP method was assessed in vari-
ous test problems, not only using simple fluids but also
simulating charged colloids in electrolyte solutions. The
results confirmed that the SP method is effective for
studying the dynamical behavior of colloids. Although we
have focused on systems of spherical colloids in simple flu-
ids and Poisson-Nernst-Planck electrolytes (i.e. Poisson-
Boltzmann level description of electrolytes), application
to other types of macromolecules of other shapes, such as
disks [19], rods, and others, and other constitutive models
for solvents is straightforward.

Note added in proofs: After this article was written, incor-
poration of thermal fluctuation with the SP method by
using a generalized Langevin equation has been discussed
in [40] to simulate the Brownian motion of colloids.
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