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Simulation method to resolve hydrodynamic interactions in colloidal dispersions
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A computational method is presented to resolve hydrodynamic interactions acting on solid particles im-
mersed in incompressible host fluids. In this method, boundaries between solid particles and host fluids are
replaced with a continuous interface by assuming a smoothed profile. This enabled us to calculate hydrody-
namic interactions both efficiently and accurately, without neglecting many-body interactions. The validity of
the method was tested by calculating the drag force acting on a single cylindrical rod moving in an incom-
pressible Newtonian fluid. This method was then applied in order to simulate sedimentation process of colloi-
dal dispersions.
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I. INTRODUCTION natural and sensible approach to simulate solid particles with

Th ber of l . ¢ rbitrary shapes. A number of kinds of tailor-made mesh,

lid ere grle ad'?“m er(;)_ uie u ;y_sgem: conS|skt]|ng 0 Slr‘f"‘ cluding unstructured mesh, overset mesh, and boundary-
solid particles dispersed in host fluids. Among them, colio-e coordinates, have been applied to specific problems, so
dal dispersions are most common to our daily life and are o

; , . ! ) ; hat the shapes of the particles are properly expressed in the
great importance, particularly in the fields of engineering an iscrete mesh space. Thus, in principle, it is possible to apply

b|or:9bgy [1,2] Follmdalldﬁpersmns havehbeer|1 reported t04ig method to dispersions consisting of many particles with
exn It Several unusual pnenomena, such as fong-range Coéhy shape. However, a numerical inefficiency arises from the
relauon; n s.ed|.me_nt|ng pamclé@} Iong.-rang(.e anisotropic following: (i) reconstructions of the irregular mesh are nec-
mterachons n I|qU|d-cry§taI colloidal d|sper§|0|[14], tran- ., essary at every simulation step according to the temporal
sient gel formations during phase separations of colloidal icje position, andii) the Navier-Stokes equation must be
suspensiong5], and electrorheological effects in particle o e with boundary conditions imposed on the surfaces of
sussp_ensmr?s gf non_cond:(Jctl\llle_:‘jlu:E?. . . all colloidal particles. The computational demands thus are
_Since the dynamics of colloidal diSpersions Is very Com-gpqrmoys for systems involving many particles, even if the
plicated, it is extremely difficult to investigate their dynamic shapes are all spherical
& Thus, our goal is to develop an efficient simulation

hani £ d ic oh ) . tsi "Yethod that can be applied to particle dispersions in complex
mechanisms of dynamic phenomena in a variety of Situag, ;4 - since host fluids are considered incompressible in
tions. Colloidal dispersions, however, have a typical multi-

From_ acomputaﬂo_nal point of VIew, pe_rformlng fu_IIy micro- velop a method to simulate colloidal dispersions in simple
scopic molecular simulations for this kind of multiscale sys-

) v ineffici An al X hich i Newtonian fluids. The reliability of this method was tested
tem is extremely inefficient. An alternative, which is gener- by calculating the drag force acting on a cylindrical object in
ally conS|dered.much better than.mlcroscqplc S|muIat|.ons, A flow. Its performance was subsequently demonstrated by
to treat host fluids as coarse-grained continuum media. simulating the sedimentation processes of colloidal particles

Several numerical methods have been developed in ay 5 Newtonian fluid within a small Reynolds number re-
effort to simulate colloidal dispersions. Two of the mostgime

well-known methods are the Stokesian dynanfiflsand the
Eulerian-Lagrangian method. The former is thought to be the

most efficient method, capable of treating hydrodynamic in- Il. SIMULATION METHOD
teractions properly. Furthermore, it can be implemented as an

O(N,) scheme foN, particles by utilizing the fast multipole iy interface in the Eulerian-Lagrangian method, rather
method[8]. However, it is extremely difficult to deal with han the original discontinuous rectangle profileterfacial

dense dispersions and dispersions consisting of ”OHSpheri%licknessg:O) schematically depicted in Fig. 1, a smoothed

particles by means of Stokesian dynamics due to the Complbrofile was introduced to the interfa¢é>0). This simple

%ateg mart]henr:atigal hstrltzjctlurgs lf_sed n Stokesi?‘n dd_y rlamicr"\hodification greatly benefits the performance of numerical
n the other hand, the Eulerian-Lagrangian metho 'Saver¥omputations, compared to the original Eulerian-Lagrangian

method for the following reasons.
(i) Regular Cartesian coordinates can be used for many
*Electronic address: nakayama@cheme.kyoto-u.ac.jp particle systems with any particle shape, rather than

In order to overcome the problems arising at the solid-
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sions with hydrodynamic interactiof&4]. The LB equation
10l i _ ] was proved to offer a faithful discretization of the Navier-

{ E Stokes equation, and colloidal dispersions are simulated in
the Eulerian-Lagrangian manner. In practical viewpoints, the
LB method is forumlated on a fixed Cartesian lattice and is
well adapted to parallel computation. The LB approach, al-
though the formulation is not intuitive and its treatment of
the moving solid-fluid boundary is somewhat complicated,
has several similar merits to the present method.

] 1 The “fluid particle dynamics”(FPD) method was pro-

0.0 - * posed earlier and is similar to our method in spifif]. In
- N this method, although a similar smoothed profile was
-(a+§/2)-a (at2) g a arE/2 adopted, there are several important d_iffe.rt_ances _between

x FPD and the present method. The most significant difference
. is that particles are modeled as a highly viscous fluid with
_FIG. 1. An example of the smoothed profilgashed line The yjiscosity 5., much greater than the fluid viscosity in FPD.
original rectangular profile is also shown for comparissolid  Thjs enables the rigidity of the particles to be sustained ap-
line). proximately by artificial diffusivityA7¢(x,t) (An= 7.~ s
boundary-fitted coordinates. The solid-fluid interface has & 7 Within the particle domain. While this model is physi-
finite volume («cma®1¢, with a andd as the particle radius cally correct, a practical problem remains in that a larger
and system dimensiorsupported by multiple grid points. Viscosity requires smaller time increments. In contrast, the
Thus, the round particle shape can be treated in fixed Cartéresent method treats colloidal particles as undeformable sol-
sian coordinates without difficulty. The simulation scheme isids (i.€., A»— ), and thus no additional constraint arises in
thus free from the mesh reconstruction problem that signifithe numerical implementations.
cantly suppresses the computational efficiency of the
Eulerian-Lagrangian method. In addition, the simple Carte- A. Basic working equations

sian coordinate enables use of periodic boundary conditions . . . . . .
Colloidal dispersions are considered in a simple Newton-

as well as the fast Fourier transformatigerT). ian liquid. The motion of the host fluid is governed by the

(i) At the interfaces, the velocity component in the direc- = . : : ' L .
tion normal to the interface of the host fluid must be equal tONawer—Stokes equation with the incompressibility condition

that of the particle. This kinetic condition is imposed in the 1
Navier-Stokes equation, as the boundary value condition de- (G +u;- VU ==V - oy, (1)
fined for the solid-fluid interface in typical methods. In our P
method, however, this condition is automatically satisfied by
an incompressibility condition on the entire domain, which V.us=0, (2
will be subsequently explained in detail. . . . . : .

(i) The computational demands for this method includeWhereuf 'S thFT' fluid velocity andp is the fluid density. The

B . . stress tensor is represented by

sensitivity to the number of grid pointsolume of the total

051

o(x)

system; however, it is insensitive to the number of particles. o =—pl + p{Vus+ (Vup}, (3)
Thus, our method is thought to be suitable for simulating
dense colloidal dispersions. wherep is the pressure ang is the fluid viscosity.

The nonzero interfacial thicknegss the only approxima- The colloidal particles are assumed to be rigid and spheri-

tion used in the present method. Thus, interparticle hydrodycal, and their position&; are tracked in a Lagrangian refer-
namic interactions can be fully resolved within the approxi-ence frame,
mation of the nonzero thickness in the present method. .

There have been two similar methods developed by dif- Ri=Vi, (4)
ferent a_uthor@,lo]. The basic ideas of _these methods is toWith the translational momentum equation
use a fixed grid and represent the particles not as boundary
conditions to the fluid, but by a body force or Lagrange
multipliers in the Navier-Stokes equation. The essential dif-
ference in our approach to these two methods is to introducgnd the angler momentum equation
an explicit diffuse interface in a smoothed profile. As long as
a fixed grid is used, the moving boundary is inevitably rep- l; .Qi = NiHv (6)
resented as diffuse as grid spacing. The introduction of a
explicit smoothed profile allows us to present a clear formuwhereR;, V;, ;, M;, andl; are the position, the translational
lation of a numerical algorithm and is advantagous when it isvelocity, the angular velocity, the mass, and the inertia tensor
applied to complex fluid§11,12 of theith particle, respectively. The hydrodynamic fom'-:E

The lattice Boltzmann(LB) method[13] has attracted and torqueN!" acting on a particle can be obtained by inte-
much attention in recent years to simulate colloidal dispergrating the stress tensor over the surface as

MV =FF +FPP+ F9 (5)
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FIH:f O'f'ds, (7) V'Up= v 'E{Vi‘i'QiX(X—Ri)%}
S i
=SV X x-R)- VY, 12
NP:f £ X (a;-dS), ® | ¢
S

_ _ N Vﬂ_(V¢i)¢‘¢i(v¢)_(V¢i)¢i‘¢i(v¢i) -0

wherer is the relative position vector from the center of e & - Py - Y
rotation to the colloid surface. Furthermofd,” is the force
due to direct particle-particle interactions, afd=M,(1 (13)
-p:hg is the buoyant force where =p./p is the mass den-  Assuming the incompressibility of the fluid velocity, the
sity ratio of the particles to the host fluid agds the gravi-  divergence of the total velocity is
tational acceleration. Relevant dimensionless parameters in V.ou=(V B
the above equations include the Reynolds number Re u=(Ve) - (up=uy). (14
=UL/v, the Froude number Fid/\gL, the mass density The gradient ofg is proportional to the surface-normal vec-
ratio p-, and the volume fractioa. HereU andL represent tor and has a support on the interfacial domains. Therefore,
the typical velocity and length scales specific to the systemghe incompressibility condition on the total veloc®y-u=0
under consideration, respectively. The kinematic viscosity means the solid-fluid impermeability condition at the solid-
=ylp and the mass density of colloidal particles, are  fluid interface.
assumed to be constant. We are to derive the evolution of the total velocity To

In typical methods, the above set of equations should benake the points clearer, we first consider the problem assum-
solved using proper boundary conditions defined at the soliding that the motions of particlegRi(t),V;(t),Q;(t)} are
fluid interface. In the present method, however, the solidgiven. In Eq.(11), only the fluid velocityu; is to be solved.
fluid boundary condition is replaced with a body force andThe evolution equation of the total velocity is split as
an incompressibility condition on a total velocity defined on

the entire domain. (G+u-Vyu= 1 V.o (15)
p

B. Modified working equations
du = ¢f,, (16)
Assuming a smoothed profile with a finite thicknesto .

the solid-fluid interface, we here derive the body force whichWhere the stress tensor is
accurately takes the interactions between solids and fluids o=-pl+9Vu+(Vu)T}. 17)
due to the motions of colloids in an incompressible fluid into ) ) o
consideration. The present study considers a monodisper& integrating Egs(15) with (17), the total velocity is pre-
system consisting dfl spherical particles with radius The  dicted asu=u". The pressur@ in Eq.(17) is determined to

positions of the particlefR; , ... Ry} are first transformed to  fulfill the incompressibility conditionV-u"=0. Then, the
a continuous field, body force ¢f,, is added to enforce Eq11) and the solid-

fluid inpermeability condition. Therefore, the time-integrated
N body force¢f, is determined as
Bx) =X $i(x0), 9) uh 1
=t f dsdty = iUy ) = ¥y, (18)
using theith particle’s profile functiong;(x) centered aR;. t ] . .
Several possible mathematical forms fgi(x) exist, how- Where the pressurep, is determined to fulfill V-u

ever: some typical functions are listed in the Appendix. ~ — (V%) '(Up_‘{*)zo- By solving Eq(16) with the body force,
The continuum velocity fields, is defined for the solid Eq.(18), we finally arrive at Eq(11) where the fluid velocity
particles usindVy, ...,Vy}, {24, ... .2y}, and¢; as IS
. 1
(1-¢)u=(1-¢u —;Vpph- (19

N
Pup(x,1) = 2 {Vi(1) + () X [x = RO T (x.).
i=1 We note that the nonslip condition at the solid-fluid interface
(100 s fulfilled in this time evolution of the total velocity. Since
the viscous stresgl?7) acts on the entire domain including

The total(fluid+ particle) velocity field is then given by the interfacial domain, the tangential velocity difference be-
tweenu; andup is reduced. In other words, the nonslip or
u(x,t) = (1 - P)us + duy = us + (U, — uy). (11 slip condition can be imposed in the definition of the stress

used in Eq.(15). When compared to FP[L5], their body
Since the particle velocity field, is constructed from the force is ¢f,=AnV -p{Vu+(Vu)T} with artificial diffusivity
rigid motions of particlesY -u,=0 is verified as A 7. In the limit of Ap— o, the particle becomes rigid; how-

036707-3



Y. NAKAYAMA AND R. YAMAMOTO

ever, this limit cannot be achieved by the numerical scheme
used in FPD. In contrast to FPD, the body fokblg guaran-
tees the rigidity of the solid particle without additional large
artificial diffusivity.

We complete the time evolution by deriving the hydrody-
namic forceFiH acting on the particles. The hydrodynamic
force is defined as the momentum flux between the fluid and
solid. Thus, the hydrodynamic force is simply the counterac-
tion from the fluid:

PHYSICAL REVIEW E 71, 036707(2005

1 (t*h
Vit =Vvi+ Mf dsFI'+FP+FD), (29
iJt,

ty+th
Q{‘+1:Qi“+|;1-f dsN!, (29
tn
tyth
RM™ =R+ f dsv,. (30)
t

n

Fli=- f pebif pax. (20)

Since the samef, is used for both the host fluit24) and

the colloidal particle$26) and(27) through the interface, no
In contrast to the force in Eq7) which is expressed as the excess or shorts for solid-fluid interactions exist. The same
surface integral, the above force is given as the volume intype of solid-fluid interaction has been previously proposed
tegral. The volume integral is much advantageous in meshn Ref.[16], though the treatment used in the present method
based discretization compared to the surface integral since ne more general. It is important to note that the timing of the
generation of body-fitted mesh is needed. updates for fluid(21) and particles(28)—30) has been
C. Simulation procedure shifted; the particles always go one step ahead of the fluid.
' This shift is primarily due to a technical issue related to the
(i) For a given particle configuratiofR[}, velocity {V{},  solid-fluid boundary condition. In general, the boundary
and angular momentuff)’} (i=1, ... N), where the super- value condition, which is replaced with the force due to
scriptn denotes the time step aihds the time increment, the solid-fluid interactions in the present method, is necessary to
fluid velocity at a timet=nh is predicted as update the fluid. Otherwise, in order to update both the fluid
tyg+h 1 and particles simultaneously, the implicit scheme for par-
u :un—1+f dsV -<—o—uu>, (21)  ticles must be used. Consider the problem to integrate the
thr P (n-1)th step variables{R"*, v, Q"4 with u™?, to the
nth step. The particle velocity of the next steﬁ, in Eq.(22)
is needed to update the total velocity * to u" before
(i) At stepn, the total velocityu" should be equal tai, {F\?in.l’vin l’ﬂin '} is updated. Th'.s S".“?‘"O” requires thg im-
within the particle domain and the surface-normal velocityP!ICit treatment. The use of the implicit scheme complicates
components of particles and fluid should be match in théhe algorithm and reduces the efficiency. The timing shift is

: ; ; : herefore necessary to realize the full explicit scheme de-
interfacial domain. Thus, it must be corrected by the body ™~ e o ;
forcef, defined by Y );scrlbed above. The initial conditiofRl", V', @} with u"?

P

can be generically constructed. From the total veloaity*
satisfying the initial boundary condition given by
{R™1, v QMY the hydrodynamic force and torque are
computed as surface integrals and the particle trajectory is
integrated from thgn-1)th to nth step. Together with the
&onstruction of the initial condition, the timing-shift algo-
rithm is realized without loss of generality.

In the above formulation, although the solid-fluid interac-
tion force (22) was computed on the basis of the Euler
scheme for simplicity of presentation, implementations of

under the incompressibility conditio¥ -u”=0 which deter-
mines the intermediate pressyye

. 1
#f p={"(ug—u )}/h—;V Pp. (22

The correcting pressurng, is determined to make a resultant
total velocity incompressible. This leads to the Poisson equ
tion of p,:

V2P, =p V - {e(up - u)}/h. (23)
Finally, we have

u'=u’" + ¢f Bh, (24) higher-order schemes are straightforward for E88)—(30).
Furthermore, in order to update the host fluid in E2L), no
p"=p + Pp- (25) restrictions exist for the time discretization and any conven-

] ] tional scheme can be used for incompressible fluids.
(i) The hydrodynamic force and torque acting on each

colloidal particle are now computed using the volume inte-
grals, I1l. NUMERICAL RESULTS

The present method has been applied to two specific prob-
lems: One is the calculation of the drag force acting on an
infinitely long cylindrical rod moving in a Newtonian fluid in
order to check the validity. The method was also applied to
simulations of many sedimenting particles in a two-
dimensional fluid in order to demonstrate the performance.
and the velocity, angular velocity, and position of each col-In the present simulations, the Navier-Stokes equation was
loidal particles at the current stepare updated tén+1) as  discretized with a de-aliased Fourier spectral scheme in

Fi'=- f pif palx, (26)

N =- f p(x = R{) X ¢f pdx. (27)
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FIG. 3. The relative error in the drag coefficie@ as a func-
tion of the interfacial thickness/A.

FIG. 2. (Color online Schematic representation of the cross
section of geometry around the rallis the lattice spacingaisthe ~ The velocity at the external boundary=L was set
rod radius, and is the interfacial thickness. The rod surface nowto  u(r=L,6)=U/[1-2In(a/L)][{1-(a/L)>-2 In(a/L)}e,
has a finite volume~-27a supported by several grid points on the —2{1—(a/ L)z}coseer] wheree, ande, are the unit vectors in
fixed Cartesian coordinate. the x andr directions, respectively, and t#¥y/x. An ana-
lytical solution for the Stokes equation is known for this
space and a second-order Runge-Kutta schéme Heun boundary condition, and the drag force is given By
schemgin time. For the colloidal particles, the velocity and =877U/[1-2In(a/L)]. The computedCy using the present
angular velocity were integrated with the Heun scheme andnethod as a function of Re is shown in Fig. 4 and is in good
the position was integrated with the Crank-Nicolson schemeagreement with the theoretical Stokes law insRe within
The external boundary condition on the edge of the systems%.
was imposed in the same manner as the fluid-solid boundary The accuracy of the present method using the finite inter-
condition on the particle surface. The simulation code is refacial thicknesst/A=1 was determined to be acceptable for
markably simple due to such unified treatment for all bound-simulating colloidal dispersions fdfg.<1 based on the nu-
ary conditions. merical results above.

Lo B. Sedimentation
A. Drag force on a cylindrical rod

The performance of the present method was examined by
simulating sedimentation processes of monodisperse par-
gcles in a two-dimensional Newtonian fluid in a rectangular

The drag force acting on an infinitely long cylindrical rod
with radiusa was computed by solving the Navier-Stokes
equation around the rod in order to check the accuracy of th
present method. Figure 2 shows a cross section of the geom-
etry around the rod with finite thicknegsat the interface. 10° - - - - - -

First, the effects of the finite thickness on the drag force
are examined in the square domainLéf An uniform stream
U in the x direction was assigned to the edge of the domain 104
as the boundary condition. Here the Reynolds number was

defined by Re=aU/v. The drag coefficient was calculated — 10°
as Cp=Fp/pU?%a, where the drag forc&, was computed @ 102
from Eq. (26) for various values of\, a, L, andU. Figure 3 &
shows the relative error {Cp(Re,/A)—-Cp(Re &/A 10"
=0)}/Cp(Re ,£/A=0) as a function of the interfacial thick- 0
nessé/A, whereCp(Re £/A=0) was estimated by extrapo- 10
lating the measured curve @p(Re £/A) to é/A—0. The 10
relative error inCp was observed to increase with increasing

&IA; however, it tended to converge within 5% for several 10_210.5 104 102 102 107 10° 10! 102
values ofa/A for §/A=1 and 0<Re<20. Thus,¢/A=1 was Re
set for further simulations.

Next, the drag coefficien®y was calculated. The rod was FIG. 4. Comparisons of the drag coefficiely (plus) from our
fixed at the origin in the circular domain with radius method with the theoretical curve of the Stokes Imwlid line).
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FIG. 5. The normalized lubrication force acts on two approach-
ing infinitely long cylindrical rods as a function of the nearest dis-
tance between the two surfaces. Different symbols denote differen
approaching velocitiet), ranging from 2.5¢ 107 to 9.6x 1072 by ) ) ) o
U=2.5x 106X 2.61", n=0, ...,11, which almost collapsed. The FIG. 6. (Color Snapshots of 240 colloidal disks sedimenting in

observed scaling behavie= 7Uf(h) with scaling functiorf(---) is & two-dimensional Newtonian fluid obtained using the present
characteristic of Stokes flow, due to Reynolds numberd/2/< 1. method. The magnitude of the host fluid velocity is indicated in
' color; the change of color from blue to red corresponds to a change

of the fluid velocity from small to large.

box surrounded by nonslip walls wii =1.1 anda=0.143.
The dimensionless parameters were taken to be Re=0.0916
and Fr=0.0512, where the settling velocity and the diametefore enhances the velocity correlation. The computational de-
of particle were taken as the characteristic velocity andnand required for the present simulation is less than one day
length. Other computational parameters were chosen as Of processing on a normal PC.
=1, é/A=1, a/A=10, L,/A=512, andL,/A=1024, where
they axis is in the direction of gravity. In order to prevent the
particles from overlapping within the core radiesa, the A computational method has been developed to simulate
force was addedFippz—aEpp/aRi, due to direct particle- particle dispersion in fluids. Utilizing a smoothed profile for
particle interaction using the repulsive part of the Lennardsolid-fluid boundaries, hydrodynamic interactions in many
Jones potential Epp:0.42i“i'112j=i+1[(2a/ Rij)l2 particle dispersions can be taken fully into account, both ac-
-(2a/R;)®]6(2"%a~R;), where 6(---) is the step function curately and efficiently. In principle, the present method can
andR;=|R;—Rj|. The direct interactiofr"" is not very im- ~ be easily applied to systems consisting of many particles
portant when the particles are moving around because thaith any shape. The reliability of the method was examined
particles never overlap due to the lubrication effect, everby calculating the drag force acting on a cylindrical object in
without F{'". Figure 5 shows the lubrication force acting on a flow. The performance of the method was demonstrated to
two approaching rods computed using the present methodpe satisfactory by simulating sedimentations of particles in a
The lubrication force is always repulsive in this case and\Newtonian fluid.
thus prevents the rods from approaching each other. The Another primary benefit of using the smoothed profile
strength of the repulsion increases with increasing velocityarose when the method was extended to colloidal dispersions
U. On the other hand, when the particles are stacked on the complex fluids with an internal degree of freedom, such as
bottom wall during the later stage of sedimentatiEﬁ,P is  the molecular orientation or ionic density. In complex fluids,
required to sustain the stacking against gravity. In fact, thénterparticle interactions can be mediated by the internal de-
repulsion vanishes for immobile pairs of rods. gree of freedom of the fluid. In such cases, the fluid-particle
At the initial configuration, all the particles were placed interactions at the colloid surface could be more efficiently
near the upper wall and both fluid and particle velocitieshandled by utilizing a smoothed profile. Previous studies on
were set to zero, as depicted in Figa) A typical snapshot particle dispersions in liquid-crystal solvents demonstrate a
during sedimentation is shown in Fig(. Regions with  striking example of this efficiencjl1,12. Although the hy-
swirled particles were observed, in which the particle veloci-drodynamic effects were neglected in these simulations, ex-
ties were highly correlated as a result of long-range interpartensions to implement the hydrodynamic effects by incorpo-
ticle hydrodynamic interactions. A simulation with periodic rating the present method are currently underway.
boundary conditions in the horizontat) direction was also
conducted. In this simulation, swirls were still developed;
however, they were smaller than those observed with nonslip The specific form of the smoothed profile should be se-
walls. The effect of confinement in the nonslip walls there-lected according to the convenience of the physical modeling

IV. CONCLUDING REMARKS

APPENDIX: SELECTION OF SMOOTHED PROFILES

036707-6



SIMULATION METHOD TO RESOLVE HYDRODYNAMIC... PHYSICAL REVIEW E 71, 036707(2009

of systems under consideration. In the present study, an infi- 1 a-|x-Ry
nitely differentiable function with compact support was used. #i(x) = > tanhT +1]. (A4)
We adoptedp defined as
This choice was used in Reffl1,12,19. This ¢ is also
&i(x) =g(x - Ry, (A1) infinitely differentiable as well as analytically easy to handle.
However, the support is not compact and the separation of
the three domains is ambiguous. Furthermore, the ambiguity
h[(a+ &2) —x] of domain separation tends to be more enhanced for higher-
h[(a+ &2) - x]+ h[x - (a- &2)]’ (A2) order derivatives. For practical implementation, due to expo-
nential decay of the hyperbolic function, a proper cutoff ra-
dius is adopted for the calculation of the integrals in Egs.

g(x) =

exp(—- A%x?) x=0, (26) and (27).
h(x) :{ 0 << 0 (A3) The third possible choice is given by
#i(x) =s(a-|x-Ry), (A5)
whereR;, a, & andA were the position of the particle, the
radius of the particle, the interfacial thickness, and the lattice 0, xX<-¢&2,
spacing, respectively. This choice is shown in Fig. 2. While 1 X
this ¢ may appear somewhat complicated compared to other s(x) = E(Sin —+ 1) . X< é2, (AB)
more simple choices, thig has the following benefits(i) 3
three domains—solid, fluid, and interface—are explicitly 1, x> 2,

separated; namely=1 is the solid domain(x-Ri|<a \yhich has the property of exact separation of the three do-
-¢/2), $=0 is the fluid domain(a+&/2<|x-Rj[), and 0  mains; however, the second derivativedvfs discontinuous
<¢<1 is the interfacial domain(a-¢/2<[x-Rj<a at the fluid-interface boundary. Therefore, it is not recom-
+£/2), (i) high-order derivatives of; with respect tax can  mended for computational models requiring derivatives
be analytically calculated, angii) due to its support com- higher than the second order ¢f

pactness, the integrals in Eq®6) and (27) remain local, The detailed choice ap does not affect the results of the

which contributes greatly to the efficiency of the computa-present simulations because only the first-order derivative of

tion. ¢ is required in the present case. However, care must taken if
The second possible choice is higher-order derivatives are required.
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