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Reentrant transition in the shear viscosity of dilute rigid-rod dispersions
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The intrinsic viscosity of a dilute dispersion of rigid rods is studied using a recently developed direct numerical
simulation (DNS) method for particle dispersions. A reentrant transition from shear-thinning behavior to the
second Newtonian regime is successfully reproduced in the present DNS results around a Peclet number Pe = 150,
which is in good agreement with our theoretical prediction of Pe = 143, at which the dynamic crossover from
Brownian to non-Brownian behavior occurs in the rotational motion of the rotating rod. For Pe > Pec at which
the dynamic crossover occurs, the rigid rod undergoes non-Brownian rotational motion, which means that the
rotational frequency is proportional to the shear rate. This crossover occurs only when the effect of the shear rate
is dominant over the effect of the thermal fluctuation for all areas. Otherwise, the rotational motion is dominated
by the thermal fluctuation. The viscosity undershoot is observed in our simulations before reaching the second
Newtonian regime. The physical mechanisms behind these behaviors are analyzed in detail.
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I. INTRODUCTION

The viscous properties of dilute dispersions of rigid rods
change drastically as the rate of applied shear flows γ̇

increases. Although many previous studies have investigated
this phenomenon, the mechanism of this viscosity change is not
yet completely clear. The aim of this paper is to contribute to
the understanding of the detailed mechanism of the viscosity
change by performing direct numerical simulations (DNSs)
for a dilute dispersion of rigid rods that are subject to thermal
fluctuations in a Newtonian host fluid.

The relationship between the measurable bulk rheological
properties and the microscale description of dispersions of
rodlike particles has been previously investigated [1–9].
Giesekus obtained the expression for the bulk stress tensor
of diluted spheroidal dispersions under shear flow by taking
into account the effects of the rotational Brownian motion
of the spheroids caused by thermal fluctuations [3]. Leal and
Hinch reported that the viscosity behavior is characterized by
the aspect ratio l of the rod and the dimensionless shear rate
γ̇ /Dr , where Dr is the rotational diffusion constant [5–8].

In the case of weak-shear flow, γ̇ /Dr � 1, the dilute rigid
rod dispersions exhibit the first Newtonian behavior, in which
the viscosity η of the dispersion is constant and equal to the first
Newtonian (zero-shear limiting) value η0. For an intermediate
regime, 1 � γ̇ /Dr � l3 + l−3, the dispersions exhibit shear-
thinning behavior, in which η ∝ (γ̇ /Dr )−1/3. In the case of
strong-shear flow, l3 + l−3 � γ̇ /Dr, the dispersions reenter
the second Newtonian regime, in which η becomes constant
again and is equal to the second Newtonian (high-shear-
limiting) value η∞. Similar results have also been obtained
in numerical [10,11] and experimental [12,13] studies. In
this paper the phrase viscosity transition is used to express
the changes in viscosity from the first Newtonian to shear-
thinning behavior and from shear-thinning to the second
Newtonian behavior. Similar results have been observed for

*h-kobayashi@aist.go.jp
†ryoichi@cheme.kyoto-u.ac.jp

dilute dispersions of flexible chains, both experimentally [14]
and theoretically [15].

Hinch and Leal [5,6] proposed a theoretical model for the
viscosity transitions. They considered that the viscosity η of
the dispersion is determined by the ensemble average of the
temporal viscosity η̂(θ,ϕ) using the probability distribution
function (PDF) Pγ̇ (θ,ϕ) of the two orientation angles θ and ϕ

of the rod, i.e.,

η(γ̇ ) =
∫

η̂(θ,ϕ)Pγ̇ (θ,ϕ) dθ dϕ. (1)

Here the form of Pγ̇ (θ,ϕ) is shear rate dependent, and the shear
rate dependence of the dispersion viscosity η(γ̇ ) is introduced
mainly through this function.

The rigid rod undergoes a random rotational Brownian
motion at low shear rates in the first Newtonian regime, in
which the effect of thermal fluctuations is dominant over the
effect of shear flow. Therefore,

Pγ̇ (θ,ϕ) = const (2)

holds over the entire phase space of θ and ϕ. The viscosity
is thus constant with respect to the shear rate change in this
regime, i.e., η(γ̇ ) = η0.

In contrast, the rigid rod undergoes a deterministic tumbling
motion attributable to strong-shear flow in the second New-
tonian regime. In this case, the tumbling motion is perfectly
described by Jeffrey’s equation [1]. Therefore, the PDF ap-
proaches the high-shear limiting (non-Brownian) asymptotic
form with increasing γ̇ :

Pγ̇ (θ,ϕ) = PJ (θ,ϕ), (3)

where PJ (θ,ϕ) is the theoretical result [6] derived from
Jeffrey’s equation [1]. The viscosity, therefore, tends to be
constant again in this regime, i.e., η = η∞.

The viscosity exhibits strong shear-thinning behavior in the
intermediate regime. The PDF is approximately given by

Pγ̇ (θ,ϕ) � PJ (θ,ϕ) + (Dr/γ̇ )P1(θ,ϕ), (4)
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FIG. 1. A schematic illustration of the vis-
cosity transition. (a) A typical behavior of the
intrinsic viscosity [η] as a function of the di-
mensionless shear rate γ̇ /Dr . [η]0 is the intrinsic
viscosity in the limit γ̇ /Dr → 0. Here P (ϕ) ≡∫ π

2
− π

2
cos θP (θ,ϕ) dθ is normalized so that S ≡∫ π

2
− π

2
P (ϕ) dϕ = 1. (b) P (ϕ) in the weak-shear

regime where the rod undergoes random tum-
bling. (c) P (ϕ) in the strong-shear regime where
the rod undergoes periodic tumbling.

where P1 represents the leading term of the perturbation
expansion of the thermal effects. It is clearly seen that
the contribution from the thermal effects decreases as the
dimensionless shear rate γ̇ /Dr increases in this regime, which
gives rise to drastic shear-thinning behavior. The solid line
shown in three different flow regimes in Fig. 1 represents a
schematic illustration of the viscosity transition based on the
above considerations.

Consistent with the theoretical model of Hinch and Leal
[5,6], the viscosity transition from the first Newtonian to
the shear-thinning regime has already been successfully
reproduced in various numerical studies [11,16]. However,
the viscosity transition from the shear-thinning to the second
Newtonian regime has never been successfully reproduced
by numerical simulations. For rigid rod dispersions, we
did not find any previous studies that were performed at
shear rates high enough to approach the second Newtonian
regime. Several numerical simulations have been conducted
for flexible chain dispersions at high shear rates that are
expected to be in the second Newtonian regime. However,
the viscosity transition from shear-thinning to the second
Newtonian behavior has never been correctly reproduced,
not even when the hydrodynamic interactions are taken into
account using the Rotne-Prager-Yamakawa (RPY) tensor [16].

In the present study, we used a different type of approach,
called the smoothed profile method (SPM) [17–21] categorized

as a fluid mechanics approach [22], which can accurately take
into account the thermal fluctuations and the hydrodynamic
coupling between bead particles with a finite radius a and a
Newtonian host fluid, based on DNS of particle dispersions.
The viscosity of a rigid rod dispersion has been calculated
using SPM to reproduce the viscosity transition from shear-
thinning to the second Newtonian regime and to examine
carefully the validity of the theoretical model proposed by
Hinch and Leal [5,6].

II. METHODS

A. Model

We solve the dynamics of a single rigid rod in a Newtonian
solvent using SPM [17–20]. In this method, the boundaries
between solid particles and solvents are replaced with a
continuous interface by assuming a smoothed profile. This
simple modification enables us to calculate the hydrodynamic
interactions both efficiently and accurately without neglecting
many-body interactions. The equation governing a solvent
with density ρf and shear viscosity ηf is a modified Navier-
Stokes equation:

ρf

[
∂u
∂t

+ (u · ∇)u
]

= ∇ · σ + ρf φfp + fshear (5)
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with the incompressible condition ∇ · u = 0, where

σ = −pI + ηf[∇u + (∇u)T ] (6)

is the Newtonian stress tensor with a solvent viscosity of ηf ,
and u(r,t) and p(r,t) are the velocity and pressure fields
of the solvent, respectively. A smoothed profile function
0 � φ(r,t) � 1 distinguishes between the fluid and particle
domains, yielding φ = 1 in the particle domain and φ = 0
in the fluid domain. These domains are separated by thin
interstitial regions, the thicknesses of which are given by ξ . The
body force φfp is introduced so that the total velocity field u of
the dispersion satisfies u(r) = (1 − φ)uf(r) + φup(r), where
uf is the fluid velocity and up represents the rigid motions of
the particles. The incompressible condition ∇ · u thus ensures
∇φ · (up − uf) because both uf and up satisfy incompressible
conditions. The gradient of φ is proportional to the surface-
normal vector and has a support on the interfacial domains.
Therefore, the body force φfp introduced to satisfy the
rigidity of the particles ensures the appropriate impermeability
boundary conditions at the fluid-particle interface, whereas
the nonslip boundary conditions are imposed automatically by
the viscous stress term in the Navier-Stokes equation. More
detailed explanations and the mathematical expressions for φ

and φfp were also detailed in our previous papers [17,18]. The
external force fshear is introduced to maintain a linear shear
with a shear rate of γ̇ . This force is applied with the oblique
coordinate transformation based on tensor analysis [21,23].

In the present study, we use a bead-spring model consisting
of N freely rotating beads in a single rigid rod. The bead
diameter is σ = 2a. The motion of the ith bead is governed by
the following Newton-Euler equations of motion with thermal
fluctuations:

Mi

d

dt
Vi = FH

i + FP
i + FC

i + GV
i ,

d

dt
Ri = Vi , (7)

Ii · d

dt
�i = NH

i + G�
i , (8)

where Ri , Vi , and �i are the position, translational velocity,
and rotational velocity of the beads, respectively. The variables
Mi and Ii are the mass and moment of inertia, and FH

i and
NH

i are the hydrodynamic force and torque exerted by the
solvent on the beads, respectively [17,18]. GV

i and G�
i are

the random force and torque, respectively, caused by thermal
fluctuations. The temperature of the system is defined such
that the long-time diffusive motion of dispersed particles
reproduces the correct behavior [19,20]. FP

i represents the
potential force attributable to direct interbead interactions.

From our previous study [21], we can evaluate the average
stress tensor of the dispersion 〈σ dis〉 as

〈σ dis〉 = 〈σ 〉 − 1

V

〈∫
drrρφfp

〉
t

(9)

with the volume V = LxLyLz, where Li is the system size in
the i direction, 〈· · ·〉 denotes averaging over space and time,
and 〈· · ·〉t denotes time averaging over the steady state.

We use a bead-spring model as a model of rodlike
objects with a truncated Lennard-Jones potential and a finitely

extensible nonlinear elastic (FENE) potential. The truncated
Lennard-Jones interaction is expressed in terms of ULJ:

ULJ(rij ) =
{

4ε
[(

σ
rij

)12 − (
σ
rij

)6] + ε
(
rij < 2

1
6 σ

)
0

(
rij > 2

1
6 σ

)
,

(10)

where rij = |Ri − Rj |. The parameter ε characterizes the
strength of the interactions, and σ represents the diameter
of the beads. Consecutive beads on a chain are connected by a
FENE potential of the form

UFENE(r) = −1

2
kcR

2
0 ln

[
1 −

(
r

R0

)2 ]
, (11)

where r = |Ri+1 − Ri |, kc = 30ε/σ 2, and R0 = 1.5σ . Let
us denote FC

i as the constraint force acting on the ith
bead attributable to the bond-angle constraints that cause the
connected beads to form a straight rod. Thus,

FC
i = ∂

∂Ri

(
N∑

α=3

μα · �α

)
, (12)

�α = (α − 2)R1 − (α − 1)R2 + Rα, (13)

where �α = 0 is the constraint condition to be satisfied.
The variable μα is a Lagrange multiplier associated with the
constraints chosen such that the condition �α = 0 is satisfied
at a time t + h, where h is the time increment of a single
simulation step.

The numerical simulations are performed in three dimen-
sions with periodic boundary conditions. The lattice spacing
� is taken to be the unit of length. The unit of time is
given by ρf �2/ηf , where ηf = 1 and ρf = 1. The system
size is Lx × Ly × Lz = 32 × 32 × 32. The other parameters
include the following: σ = 4, ξ = 2, ε = 1, Mi = 4πa3/3,
N = 5, and h = 6.7 × 10−2. In the presented simulations
under shear flow, the Navier-Stokes equation is discretized
with a dealiased Fourier spectral scheme in space and with
a Euler scheme in time [21]. To follow the motions of
the beads, the positions, velocities and angular velocities of
the beads are integrated with the Adams-Bashforth scheme.
The bead particles are assumed to be neutrally buoyant, and
hence no gravity effects are considered. At t = 0, the rigid rod
aligns along the x axis, which is the flow direction. The total
duration τt of each simulation is set such that γ̇ τt � 3500.
The range of kBT is 5.0 × 10−4 < kBT < 32 and that of γ̇

is 5.0 × 10−3 < γ̇ < 2.0 × 10−2, where kB is the Boltzmann
constant, and T is the temperature. From the symmetry of the
system, we follow the polar angles θ and ϕ defined in Fig. 2 to
consider the motion of a rigid rod. The angle defined between
the rod and the x-y plane is denoted by θ , and the angle defined
between the rod projected on the x-y plane and the x axis is
denoted by ϕ.

B. Effective aspect ratio

In the present study, the rigid rod is represented as
connected beads. Because the beads composing the rod can
rotate freely, the effective aspect ratio l differs from the simple
geometrical aspect ratio L/σ , where L � Nσ is the rod’s
length. Instead, we evaluate l numerically with the PDF of
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FIG. 2. The geometry of the rod’s orientation in the present
simulations.

the rotating rigid rods without thermal fluctuations in the x-y
plane, i.e., θ = 0, as represented by

PJ(ϕ) = C0

l2−1
l2+1 sin2 ϕ + 1

l2+1

, (14)

where C0 is determined from the normalization condition∫ π
2

− π
2
PJ(ϕ) dϕ = 1 [1]. Equation (14) was obtained in the

following manner. The projection of the PDF PJ(ϕ) of a
rotating rigid rod on the x-y plane is governed by a Fokker-
Planck equation of the form

∂PJ(ϕ)

∂t
= ∂[ωPJ(ϕ)]

∂ϕ
+ 2Dr

∂PJ(ϕ)

∂ϕ2
, (15)

where ω = ϕ̇ is the angular velocity of the tumbling rod.
When the rigid rod rotates in the x-y plane without thermal
fluctuations in steady state, the Fokker-Planck equation is
modified to

∂[ωPJ(ϕ)]

∂ϕ
= 0. (16)

In this case, ω is represented as

ω = γ̇

(
l2 − 1

l2 + 1
sin2 ϕ + 1

l2 + 1

)
(17)

from Jeffrey’s equation [1]. Equation (14) is obtained because
PJ(ϕ) is inversely proportional to ω. Figure 3 shows that our
numerical results of P ′(ϕ) = ∫

cos θPγ̇ (θ,ϕ) dθ of the strong-
shear regime agree well with PJ(ϕ) with l = 7.1. We thus use
l = 7.1 for the present rigid rod, which is composed of freely
rotating beads.

C. Analytic formula for the viscosity

Hinch and Leal [5,6] studied the rheological properties of a
dilute dispersion of rigid nonspherical particles in steady shear
flow. They obtained an analytical formula for the dispersion
viscosity η ≡ σ dis

12 /γ̇ . We analyze our numerical results using
their formula. The dispersion viscosity η is given by the
ensemble average of the temporal viscosity η̂(θ,ϕ) using the

 0
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FIG. 3. The PDF for a rotational rigid rod as a function of ϕ

without thermal fluctuations. Numerical results (open circle) and
Eq. (14) with l = 7.1 (solid line).

PDF of the two angles for the rotating rigid rods Pγ̇ (θ,ϕ),
which satisfies the normalization condition,∫ π

2

− π
2

cos θ dθ

∫ π
2

− π
2

dϕPγ̇ (θ,ϕ) = 1. (18)

The temporal shear viscosity is found to be

η̂(θ,ϕ) = ηf

[
1 + �

(
A cos4 θ sin2 2ϕ + 2B cos2 θ + 2

I3

+Dr

γ̇
F

1

2
cos2 θ sin 2ϕ

)]
, (19)

where � is the volume fraction of suspended particles, Dr is
the rotational diffusion constant, and A,B,F,I3 are the shape
functions given in previous studies [4–6]. In the case of rigid
rods, A, B, F , and I3 are dependent only on the aspect ratio l

at l = 7.1, A = 8.44, B = 0.06, and I3 = 0.99.
The shear viscosity of the dispersion is obtained by

substituting Eq. (19) into Eq. (1). When we consider the
strong-shear case Dr � γ̇ , we can safely neglect the final term
in Eq. (19). The dynamics of the angle ϕ become decoupled
from the angle θ because the angle θ is sufficiently small for a
large l [6]. Thus, we obtain the following formula:

η(γ̇ ) =
∫

η̂(θ,ϕ)P ′′(θ )P ′(ϕ) dθ dϕ (20)

= ηf

[
1 + �

(
A〈cos4 θ〉θ 〈sin2 2ϕ〉ϕ + 2B〈cos2 θ〉θ

+ 2

I3
+ �E

)]
, (21)

where 〈f (θ )〉θ = ∫ π
2

− π
2

cos θ dθf (θ )P ′′(θ ), 〈g(ϕ)〉ϕ =∫ π
2

− π
2
dϕg(ϕ)P ′(ϕ), P ′′(θ ) ≡ ∫ π

2
− π

2
Pγ̇ (θ,ϕ) dϕ, and �E is

the error arising from the separation of integrals over θ and ϕ.
We can neglect �E safely because �E is sufficiently small
in comparison with the other terms.
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0 τp/12

2τp/12 3τp/12

FIG. 4. (Color online) The time evolution of the fluid velocity field u at kBT = 0. The times range from 0 to τp/4, where τp is the rotational
period. The velocity fields are plotted only when |ud |/|u| > 0.05, where ud is the deviation velocity field u − γ̇ (y − Ly/2)ex.

III. RESULTS

Figure 4 shows the time evolution of the fluid velocity field u
for kBT = 0. Display of the velocity field, depicted by arrows,
is limited to regions where the quantity |ud |/|u| exceeds 0.05,
where ud is the deviation velocity field defined as u − γ̇ (y −
Ly/2)ex. The time interval displayed is from 0 to τp/4, where
t = 0 is the time at which ϕ = 0 and τp is the rotational period.
The rigid rod aligns almost fully with the shear direction in
most of period. This motion is in good agreement with Jeffrey’s
equation [1]. The velocity u is approximately equal to γ̇ (y −
Ly/2)ex except in the vicinity of the rod. To examine the
deviation velocity, we plot the time evolution of the deviation
velocity field ud in Fig. 5 in regions where |ud |/|u| > 0.05.
The amplitude of ud is significant only near the rod. This is
because the deviation velocity is attributable to an exchange of
momentum between the particle and fluid. The amplitude of
ud at time 2τp/12 is larger than at t = 0,τp/4. This behavior is
in qualitative agreement with that of η̂(θ,ϕ) which, as Eq. (19)
reveals, has minima at ϕ = 0,π/2 and a maximum at ϕ = π/4.
The momentum exchange between particle and fluid is clearly
evident in η̂(θ,ϕ).

In Fig. 6 we plotted the intrinsic viscosity

[η] ≡ η − ηf

ηf �
(22)

of the dispersion obtained from the present simulations as a
function of the Peclet number Pe. Pe is the dimensionless

number that represents the strength of the shear flow normal-
ized by the strength of diffusion caused by thermal fluctuations.
In our work, Pe is defined as

Pe = 6πηf σ 3γ̇

kBT
. (23)

We find that the intrinsic viscosity [η] gradually changes
from non-Newtonian (shear-thinning) to Newtonian behavior
with increasing Peclet number, as shown in Fig. 6. The
present simulation data for [η] show shear-thinning behavior
for Pe < 102 and second Newtonian behavior for 104 < Pe.
These results are in good agreement with previous theoretical
studies [5,6,9].

To quantitatively compare our results with those of Hinch
and Leal [5,6], we obtain the relationship between Pe in our
definition and γ̇ /Dr , which is used in Hinch and Leal’s work
[5] instead of Pe. On the basis of the shell model [24,25], the
rotational diffusion constant Dr for a rigid rod is calculated as

Dr = 3[ln l + d(l)]kBT

πηf L3
, (24)

d(l) = −0.662 + 0.917

l
− 0.05

l2
. (25)

In the shell model mentioned above, the contour of the
macromolecules of arbitrary shape is represented by a shell
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0 τp/12

2τp/12 3τp/12

FIG. 5. (Color online) The time evolution of the deviation velocity field is ud ≡ u − γ̇ (y − Ly/2)ex at kBT = 0. The times range from 0
to τp/4, where τp is the rotational period. The velocity fields are plotted only when |ud |/|u| > 0.05.

composed of many identical small beads. The shell model can
be adequately modeled by decreasing the size of the beads.

 2

 3

 4

 5

 6
 7
 8
 9

 10

 14

 20

10-2 10-1 100 101 102 103 104 105

[η
]

Pe

7.35x10-2 2.64x101 104

R1 R2 R3 R4

FIG. 6. The intrinsic viscosity as a function of Pe. [η] (circle)
and [ηθ ] (square). The three solid lines correspond to the theoretical
results of Hinch and Leal [5,6], with the first Newtonian regime
denoted by R1, the shear-thinning regime denoted by R2, and the
second Newtonian regime denoted by R3 + R4. In our simulation, the
viscosity shows an undershoot before reaching the second Newtonian
regime R3.

From Eqs. (23) and (24), the relationship between γ̇ /Dr and
Pe is expressed as

γ̇

Dr

= l3

18[ln l + d(l)]
Pe. (26)

The theoretical model of Hinch and Leal is also plotted in Fig. 6
with the solid lines in the three different regimes, namely, the
weak (R1), intermediate (R2), and strong (R3 + R4) shear
regimes.

According to the work of Hinch and Leal [5], for the weak-
shear regime γ̇ /Dr � 1, namely, Pe � 7.35 × 10−2, which is
denoted by R1 in Fig. 6, [η] is constant. On the basis of Ortega’s
work [26], the intrinsic viscosity [η] of the weak-shear flow
regime for a rigid rod with a short aspect ratio is calculated as

[η] = 4

15

l2

ln l + ϒ(l)
, (27)

ϒ(l) = −0.90 − 1.38

l
+ 8.87

l2
− 8.82

l3
. (28)

This expression is identical to Hinch and Leal’s result in the
limit of l → ∞. The lowest shear rate that we consider in
the present simulations is still not in the weak-shear regime
because of the extremely long simulation time needed to obtain
reliable data.

For the intermediate shear regime 1 � γ̇ /Dr � l3 + l−3,
namely, 7.35 × 10−2 � Pe � 26.4, which is denoted by R2
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in Fig. 6, the intrinsic viscosity [η] shows shear-thinning as
derived from Eq. (21),

[η] = C1Pe−1/3 + 2B + 2/I3, (29)

where C1 is an arbitrary constant. Figure 6 shows good
agreement between the data from the present simulation data
and those of Hinch and Leal, where C1 was determined to fit the
simulation data. When l is sufficiently large, the contributions
from the final two terms in Eq. (29) become negligible, and
[η] ∝ Pe−1/3.

For the strong-shear regime l3 + l−3 � γ̇ /Dr , namely,
26.4 � Pe, which is denoted by R3 and R4 in Fig. 6, the
theory predicts that the intrinsic viscosity [η] is constant
at A〈sin2 2ϕ〉J + 2B + 2/I3 = 3.99 = [η∞] from Eq. (21).
In this case, 〈· · ·〉J denotes the ensemble average, which is
calculated as

〈f (ϕ)〉J =
∫ π

2

− π
2

dϕf (ϕ)PJ(ϕ). (30)

We obtained [η∞] = 3.82 from our numerical data in the high
shear regime, which is denoted by R4 in Fig. 6. The error from
the theoretical value 3.97 is within 4.26%.

For the regime 102 < Pe < 103, which is denoted by R3 in
Fig. 6, the behavior of [η] shows a notable undershoot before
reaching the high-shear limiting second Newtonian viscosity.
This effect is attributable to the fluctuations in θ and gives
rise to the deviations of P ′′(θ ) from its high-shear limiting

form P ∗(θ ) ≡ ∫ π
2

− π
2
PJ(θ,ϕ) dϕ and increases with decreasing

Pe. The rods tend to align in the flow direction with increasing
Pe. Therefore, 〈cos4 θ〉 and 〈cos2 θ〉 monotonically increase up
to their high-shear limiting values with increasing shear rate.
Increasing 〈cos4 θ〉 and 〈cos2 θ〉 leads to an increase in [η]
up to [η∞] through Eq. (21). To examine the role of thermal
fluctuations in θ in more detail, let us define

[ηθ ] = A〈sin2 ϕ〉J〈cos4 θ〉θ + 2B〈cos2 θ〉θ + 2

I3
(31)

= 1.81〈cos4 θ〉θ + 0.12〈cos2 θ〉θ + 2.02 (32)

to estimate the contribution of θ fluctuations on the total
intrinsic viscosity of the dispersion. In this case, P (ϕ) =
PJ(ϕ) is assumed in Eq. (21), and 〈cos4 θ〉θ and 〈cos2 θ〉θ
are evaluated numerically from the present simulations. The
results are plotted in Fig. 6 with the square symbols. One can
see that the data of [ηθ ] almost perfectly collapse onto those
of [η] for 102 < Pe.

However, the shear-thinning behavior observed for 102 >

Pe is attributable to the effect of the thermal fluctuations in
ϕ. This behavior gives rise to the deviations of P ′(ϕ) from its
high-shear limiting form PJ(ϕ) and increases with decreasing
Pe. To examine this effect quantitatively, we introduce

[�η] ≡ [η] − [ηθ ] (33)

= A〈cos4 θ〉θ (〈sin2 2ϕ〉ϕ − 〈sin2 2ϕ〉J ) (34)

to eliminate the contribution of θ fluctuations from the total
intrinsic viscosity of the dispersion. Figure 7 shows the behav-
ior of [�η] as a function of Pe. [�η] decreases with increasing
Pe, and finally [�η] goes to zero at approximately Pe ≈ 150.
This value is considerably different from the value Pe = 26.4

 0

 2

 4

 6

 8

 10

 12

10-1 100 101 102 103 104 105

[Δ
η]

Pe

Pec=143

FIG. 7. The behavior of [�η] as a function of Pe. [�η] goes to
zero at approximately Pe ≈ 150.

predicted by Hinch and Leal [5] for the viscosity transition
from shear-thinning to the second Newtonian behavior but
agrees well with our theoretical prediction of Pec = 143, at
which the dynamic crossover from Brownian to non-Brownian
behavior occurs in the rotational motion of the rotating rod at
l = 7.1 [27].

Figure 8 shows the first normal stress, N1 = (σ dis
11 − σ dis

33 ),
normalized with respect to the viscous stress of the solvent,
ηγ̇ , as a function of Pe. According to Hinch and Leal [5],
in the intermediate shear regime, denoted by R2 in Fig. 8,
the first normal stress behaves as N1 ∝ γ̇ 2/3D

1/3
r . Therefore,

N1/ηγ̇ ∝ γ̇ −1/3D
1/3
r ∝ Pe−1/3 in regime R2. This behavior is

in good agreement with our numerical results.
In the strong-shear regime, denoted by R3 and R4 in Fig. 8,

the theory predicts a first normal stress of N1 = 0. This is as
given by Jeffrey’s equation [1], which perfectly describes the

10-4

10-3

10-2

10-1

100 101 102 103 104 105

N
1/

ηγ

Pe

γ = 0.005
γ = 0.01

0.0008 (Pe=infinity,γ = 0.005) 
0.0017 (Pe=infinity,γ = 0.01) 

Pe-1/3

R2 R3 R4

FIG. 8. Normalized first normal stress N1/ηγ̇ as a function of Pe.
γ̇ = 0.01 (closed circle) and γ̇ = 0.005 (open circle). The solid line
corresponds to Pe−1/3, which is the theoretical result of Hinch and
Leal [5,6]. The dashed (dotted) line corresponds to N1/ηγ̇ in the limit
that Pe → ∞ for γ̇ = 0.01 (γ̇ = 0.005).

051404-7



HIDEKI KOBAYASHI AND RYOICHI YAMAMOTO PHYSICAL REVIEW E 84, 051404 (2011)

tumbling motion in this regime. However, even if we assume
kBT = 0 so that Pe → ∞, the numerical error in the first
normal stress E(γ̇ ) remains finite and depends on the shear
rate. Nevertheless, because of this error, our results depart
from the theoretical prediction of Hinch and Leal [5] for high
Pe. We consider E(γ̇ ) to be a numerical error arising from the
competition between shear force and interbeads interaction, as
described by Eqs. (10) and (11), when the rigid rod rotates in
Jeffrey’s orbit. Figure 8 shows E(γ̇ ) for γ̇ = 0.01,0.005, when
Pe > 104, E(γ̇ ) is in good agreement with N1/ηγ̇ at each shear
rate. This agreement is because the tumbling motion is well
described by Jeffrey’s equation [1].

Also of interest are the off-diagonal entries of the stress
tensor and the second normal stress. However, these values
are not accurately calculated by this numerical method. In
comparison with theoretical results, the numerical error in the
stress tensor σ dis

12 is near 4%. The other entries of the stress
tensor are less than 0.01 × σ dis

12 . For example, the second
normal stress, N2 ≡ σ dis

22 − σ dis
33 ≈ 0.01 × σ dis

12 , is buried in
numerical error.

IV. DISCUSSION

Let us discuss the numerical models with which the
viscosity transition to the second Newtonian regime occurs
based on Eq. (21). For the strong-shear regime 1 � γ̇ /Dr ,
we can estimate 〈cos2 θ〉θ � 1 and 〈cos4 θ〉θ � 1 because
Pγ̇ (θ,ϕ) � P ∗(θ )P (ϕ). In this case P (ϕ) satisfies the Fokker-
Planck equation, shown as Eq. (15), for which the formal
solution is given by

P (ϕ) = C1

∫ π

0
dψ exp

[
− γ̇

4Dr

f (ψ,ϕ)

]
, (35)

f (ψ,ϕ) = ψ −
(

1 − 2

l2 + 1

)
sin ψ cos(ψ − 2ϕ), (36)

where C1 is determined from the normalization condition,∫ π
2

− π
2
P (ϕ) dϕ = 1. When γ̇ /Dr is sufficiently large, P (ϕ)

converges to PJ(ϕ), represented by Eq. (14), and the viscosity
displays second Newtonian behavior.

The above discussion is not valid for the limit of l →
∞, which corresponds to an infinitely long or equivalently
infinitely thin rod. In this limit the angular velocity of the
tumbling rod becomes zero at ϕ = 0 from Eq. (17). Thus,
the rod cannot continue its rotational motion without thermal
fluctuations because the hydrodynamic torque acting on the
rod becomes zero at ϕ = 0 for l → ∞. Therefore, P (ϕ) in
Eq. (35) is modified to

P∞(ϕ) = C2

∫ π

0
dψ exp

{
− γ̇

4Dr

[ψ − sin ψ cos(ψ − 2ϕ)]

}
,

(37)

where C2 is determined from the normalization condition,∫ π
2

− π
2
P∞(ϕ) dϕ = 1. Using Eq. (37), the intrinsic viscosity [η]

 0.01

 0.1

 1

100 101 102 103 104 105 106

〈 s
in

2 2ϕ
 〉 ∞

Dimensionless shear rate

FIG. 9. The behavior of 〈sin2 2ϕ〉∞ as a function of γ̇ /Dr .
Numerical results (circle). The solid line corresponds to (γ̇ /Dr )−1/3

is rewritten as

[η] = A〈sin2 2ϕ〉∞ + 2B + 2/I3, (38)

〈f (ϕ)〉∞ =
∫ π

2

− π
2

dϕf (ϕ)P∞(ϕ). (39)

It is demonstrated in Fig. 9 that the first term in Eq. (38) shows
〈sin2 2ϕ〉∞ ∝ (γ̇ /Dr )−1/3 for the entire range of Pe. Figure 10
shows that only A is increasing with increasing l, while B

and 2/I3 tend to be decreasing or constant with increasing l.
We estimate A/(2B + 2/I3) ∼ l1.8 for l → ∞. This relational
expression indicates that

[η] ∝ 〈sin2 2ϕ〉∞ ∝ (γ̇ /Dr )−1/3 (40)

holds for the entire range of Pe without indicating the occur-
rence of second Newtonian behavior. The same conclusion

l

l

FIG. 10. The behaviors of A, B, and 2/I3 as a function of the
aspect ratio l. A (bold solid line), B (dashed line), 2/I3 (dotted line).
The thin solid line represents l1.8.
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can be derived by considering a characteristic shear rate γ̇ ∗
at which the first term in Eq. (38) becomes comparable to the
remaining terms. The condition is satisfied at

γ̇ ∗

Dr

∼ l5.4. (41)

Equation (41) indicates γ̇ ∗ → ∞ for l → ∞.
In the case of a previous numerical study [16], the

hydrodynamic force acting on each bead particle was con-
sidered through the RPY tensor. Although the translational
hydrodynamic force was properly considered, the rotational
hydrodynamic torque acting on each bead particle was com-
pletely ignored in that study. Therefore, it is suspected that
the hydrodynamic torque acting on the rod becomes zero at
ϕ = 0. The rod cannot continue rotational motion at a high
shear rate, where the effect of thermal fluctuations disappears.
This situation is identical to the case of l → ∞. We expect that
the second Newtonian regime could be correctly reproduced
with the RPY tensor approach if the hydrodynamic torque is
properly taken into account.

V. CONCLUSION

In the present study, we numerically calculated the intrinsic
viscosity [η] of a dilute dispersion of rigid rods using a DNS
method known as SPM. Simulations were conducted under the
influence of thermal fluctuations and shear flow in the ranges of
5.0 × 10−4 < kBT < 32 and 5.0 × 10−3 < γ̇ < 2.0 × 10−2,
respectively. We have successfully reproduced the viscos-
ity transition from shear-thinning to the second Newtonian

regime, as was correctly predicted by the theoretical model of
Hinch and Leal [5,6].

However, some discrepancies were noted between the the-
oretical predictions and the results of the present simulations.
By defining [�η] to eliminate the effects of fluctuations in θ ,
which is not considered in the theoretical model, we confirmed
that the viscosity transition from shear-thinning to the second
Newtonian behavior occurs at approximately Pe = 150. This
value is considerably larger than the value of 26.4 predicted
by Hinch and Leal [5] but agrees well with our theoretical
prediction of Pec = 143, at which the dynamic crossover from
Brownian to non-Brownian behavior occurs in the rotational
motion of the rotating rod [27].

We have analyzed the mechanism of the viscosity under-
shoot observed in our simulation before reaching the second
Newtonian regime. Shear flow suppresses fluctuations in ϕ and
θ as its rate is increased. The former contributes to decreasing
[η], but the latter contributes to increasing [η]. The undershoot
occurs because of the two competing effects.

We also conclude that the viscosity transition to the
second Newtonian regime can be reproduced correctly only
if the hydrodynamic torque is properly taken into account in
numerical models of the dispersions.
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