
 

 

OCTA 
Integrated simulation system for soft materials 

GRAPHICAL USER INTERFACE 

GOURMET 
OPERATION’S MANUAL 

Version 4.1.0 

 

 

 

 

 

 

 

 

OCTA User’s Group 
 

Aug. 08 2007 

 



i 

Authors of the Manual 
Chapter 1   Masao Doi, Tokyo University 
Rest of all chapters  Yuzo Nishio 
Maintenance  Masahiro Nishimoto 
 

Program Developers 
Software Design  Shinji Shibano, Yuzo Nishio 
Software Development Masahiro Nishimoto, Astuko Shono, Hiroshi Hashimoto, 
   Yoshiharu Inui, Ikuhisa Masui, Jyunichiro Hiejima, Yukihiro Okuno 
Testing   Masahiro Nishimoto, Eisuke Nishitani, Yuzo Nishio 
 

Acknowledgment 
This work is supported by the national project, which has been entrusted to the Japan Chemical Innovation 

Institute (JCII) by the New Energy and Industrial Technology Development Organization (NEDO) under 
METI’s Program for the Scientific Technology Development for Industries that Creates New Industries. 

This work is also partially supported by CREST-JST (Japan Science and Technology Agency) from 2003FY. 
 

Copyright (C) 2000-2007 OCTA Licensing Committee  All rights reserved. 
 



ii 

Contents 
 
What is GOURMET........................................................................................................................................... 1 
Getting started .................................................................................................................................................... 3 

2.1   Start GOURMET................................................................. 3 
2.2   Edit UDF...................................................................... 4 
2.3   Run Python.................................................................... 5 
2.4   Run Engine.................................................................... 6 
2.5   View Result................................................................... 8 
2.6   Tools......................................................................... 9 

Startup Options................................................................................................................................................. 11 
3.1   System Outline............................................................... 11 
3.2   Environment Variables ........................................................ 12 
3.2.1   Needed Environment Variable .............................................. 12 
3.2.2   Optional Environment Variable ............................................ 12 

3.3   Startup Shell................................................................ 13 
3.3.1   Startup Options .......................................................... 13 
3.3.2   Microsoft Windows ........................................................ 13 
3.3.3   Linux.................................................................... 13 

3.4   Engine Manager............................................................... 14 
3.4.1   Startup Options .......................................................... 14 
3.4.2   Microsoft Windows ........................................................ 14 
3.4.3   Linux.................................................................... 14 

3.5   Data Manager................................................................. 14 
3.5.1   Microsoft Windows ........................................................ 15 
3.5.2   Linux.................................................................... 15 

3.6   Stopping GOURMET ............................................................. 15 
Editing UDF ..................................................................................................................................................... 16 

4.1   Edit Mode.................................................................... 17 
4.1.1   Edit Mode................................................................ 17 

4.2   Choosing View Format ......................................................... 17 
4.2.1   Tree View................................................................ 17 
4.2.2   Table View............................................................... 19 

4.3   Choosing Data Location ....................................................... 20 
4.3.1   Global Location .......................................................... 20 
4.3.2   Record Location .......................................................... 20 

4.4   File Menu.................................................................... 21 
4.4.1   Editing UDF Header ....................................................... 22 
4.4.2   File Converter ........................................................... 22 



iii 

4.4.3   Using Text-Formatted UDF and Binary-Formatted UDF ........................ 23 
4.5   Edit Menu.................................................................... 24 
4.5.1   Copy/Paste Mode .......................................................... 25 

4.6   View Menu.................................................................... 26 
4.6.1   Editor Preferences Dialog ................................................ 26 

4.7   Unit Conversion.............................................................. 28 
4.8   Tips for Using Editor ........................................................ 29 

Using Unit System............................................................................................................................................ 31 
5.1   Unit Menu.................................................................... 31 
5.2   Choosing Unit System ......................................................... 31 
5.3   Importing Unit System ........................................................ 32 
5.4   Displaying Engine Unit System ................................................ 33 

Scripting with Python....................................................................................................................................... 34 
6.1   Tools in Python Panel and Python Menu ........................................ 35 
6.2   Python Scripting in Editor ................................................... 35 
6.3   Python Scripting in Viewer ................................................... 36 
6.4   Action in Editor ............................................................. 37 
6.5   Picking in Viewer ............................................................ 39 
6.6   Tips for Using Python Panel .................................................. 39 

Running Engine................................................................................................................................................ 41 
7.1   Engine Manager............................................................... 41 
7.2   Engine Run Panel ............................................................. 41 
7.3   Engine Control Panel ......................................................... 43 
7.4   Tips for Using Engine Control ................................................ 44 

Viewing 3D Object........................................................................................................................................... 45 
8.1   Viewer Startup Screen ........................................................ 45 
8.2   3D Object Window ............................................................. 46 
8.2.1   Picking 3D Object Operation .............................................. 46 

8.3   Python Window in Viewer ...................................................... 46 
8.3.1   3D Object Animation ...................................................... 46 

8.4   Menu of Viewer............................................................... 47 
8.4.1   File Menu................................................................ 47 
8.4.2   View menu................................................................ 48 
8.4.3   Display Menu ............................................................. 49 
8.4.4   Picking menu ............................................................. 51 
8.4.5   Python Menu .............................................................. 51 
8.4.6   Options Menu ............................................................. 52 

Making Plot ...................................................................................................................................................... 55 
9.1   Plot Tool.................................................................... 55 
9.2   Graph Sheet Object ........................................................... 56 



iv 

9.2.1   Python Function for GraphSheet ........................................... 56 
9.3   Plot Scripting............................................................... 57 
9.3.1   Using Plot Script Library ................................................ 58 

Using Tools ...................................................................................................................................................... 59 
10.1   File Transmitter Tool ....................................................... 59 
10.2   Python Tool................................................................. 60 
10.3   Gnuplot Tool................................................................ 61 
10.4   Application Setup Tool ...................................................... 61 
10.5   Molecular Builder Tool ...................................................... 61 
10.6   Start-Up Environment Parameter Tool ......................................... 62 

Appendix A Operation environment ................................................................................................................ 65 
A.1   Operating System ............................................................. 65 
A.2   Java System.................................................................. 65 
A.3   Graphics System.............................................................. 65 
A.4   Python System................................................................ 66 

Appendix B Security policy of Engine Manager.............................................................................................. 67 
Appendix C Action definition .......................................................................................................................... 68 

C.1   Grammar of Action file ....................................................... 68 
C.2   Special words in python statement ............................................ 69 
C.3   Example of Action file ....................................................... 71 
C.4   Connection with UDF file ..................................................... 72 

Appendix D File converter ............................................................................................................................... 73 
D.1   What is File converter ....................................................... 73 
D.2   Grammar of Filter Rule ....................................................... 73 
D.3   Example of File Filter ....................................................... 75 

Appendix E Special converter tools ................................................................................................................. 77 
E.1   NASTRAN Data Converter Tool .................................................. 77 
How to use....................................................................... 77 
Description of UDF............................................................... 81 

3D Displacement of Drawing Targets (Translation/Rotation).......................................................................... 87 
F.1   Getting Ready................................................................ 87 
F.2   Operating Procedure .......................................................... 87 
Translation...................................................................... 87 
Rotation......................................................................... 88 

Environment Variables Production Tool .......................................................................................................... 91 
Appendix H   Trouble Shooting ....................................................................................................................... 93 

H.1   Python Tool.................................................................. 93 
H.2   Drawing 3D Objects ........................................................... 93 
H.3   Plotting Graphs.............................................................. 93 
H.4   Editing Values............................................................... 93 



v 

 



vi 

List of Figures 
 

Figure 1: Startup Screen of GOURMET................................................................................................ 3 
Figure 2: Tree View of Editor .................................................................................................................. 4 
Figure 3: Table view of Editor ................................................................................................................. 5 
Figure 4: Engine Run Panel..................................................................................................................... 6 
Figure 5: Engine Control Panel............................................................................................................... 7 
Figure 6: 3D Viewer.................................................................................................................................. 8 
Figure 7: Plot action ................................................................................................................................. 9 
Figure 8: 2D plotting .............................................................................................................................. 10 
Figure 9: Outline of GOURMET System ..............................................................................................11 
Figure 10: UDF file is open in Editor’s tree view. ................................................................................ 16 
Figure 11: Array expanded on Editor Tree View. ................................................................................ 18 
Figure 12:  Pop-up after right-clicking “...” ......................................................................................... 18 
Figure 13: “EndOfArray”...................................................................................................................... 18 
Figure 14: UDF file is open on Editor Table View................................................................................ 19 
Figure 15: Color variation of UDF objects. .......................................................................................... 20 
Figure 16: File menu of Editor .............................................................................................................. 21 
Figure 17: UDF header dialog ............................................................................................................... 22 
Figure 18: File Converter Dialog........................................................................................................... 23 
Figure 19: Edit menu of Editor ............................................................................................................. 24 
Figure 20: Editor View menu................................................................................................................. 26 
Figure 21: Preference/TreeView tab...................................................................................................... 26 
Figure 22: Preference/TableView tab.................................................................................................... 27 
Figure 23: Unit Conversion dialog ........................................................................................................ 28 
Figure 24: Filtering by UDF Path field ................................................................................................. 29 
Figure 25: Displaying KEY data in Table view .................................................................................... 29 
Figure 26: Unit  menu ............................................................................................................................ 31 
Figure 27: Select Unit Set dialog ........................................................................................................... 32 
Figure 28: Browse Default Unit dialog ................................................................................................. 33 
Figure 29: Python Script Window in Editor ........................................................................................ 34 
Figure 30: Example of action you take in editor. ................................................................................. 38 
Figure 31: Actions in Viewer.................................................................................................................. 39 
Figure 32: Engine Run Panel................................................................................................................. 42 
Figure 33: Engine Control Panel........................................................................................................... 43 
Figure 34: Start up Viewer..................................................................................................................... 45 
Figure 35: File menu of Viewer ............................................................................................................. 47 
Figure 36: View menu in Viewer ........................................................................................................... 48 
Figure 37: Current view data in Text screen ........................................................................................ 49 



vii 

Figure 38: Display menu of Viewer....................................................................................................... 50 
Figure 39: Picking menu in Viewer....................................................................................................... 51 
Figure 40: Python menu in Viewer........................................................................................................ 52 
Figure 41: Option menu of Viewer........................................................................................................ 52 
Figure 42: Plot tab panel........................................................................................................................ 55 
Figure 43: gnuplot  graph sample ......................................................................................................... 56 
Figure 44: Initial screen of File Transmitter ........................................................................................ 59 
Figure 45: Transmitter Connected ........................................................................................................ 60 
Figure 46: Application Setup ................................................................................................................. 61 
Figure 47: Molecule Builder .................................................................................................................. 62 
Figure 48: Python tab of Start-up environmental parameters tool .................................................... 64 
Figure 49: Group tab of Start-up environmental parameters tool..................................................... 64 
Figure 50: Three actions to read NASTRAN bulk file ........................................................................ 77 
Figure 51: Specifying a NASTRAN bulk file........................................................................................ 78 
Figure 52: Choosing Actions for drawing an element ......................................................................... 78 
Figure 53: Choosing an action to extracting partial region ................................................................ 79 
Figure 54: Specifying extraction condition for partial split ................................................................ 79 
Figure 55: Drawing action for all partial regions ................................................................................ 80 
Figure 56: Drawing result for all partial regions (whole image) ........................................................ 80 
Figure 57: Drawing result for a partial region (partial)...................................................................... 81 
Figure 58: Writing NASTRAN bulk file. .............................................................................................. 81 
Figure 59: Sequence of nodes specification .......................................................................................... 84 
Figure 60: Choosing Parallel Translation Action................................................................................. 89 
Figure 61: Parallel Translation operation Dialog ................................................................................ 89 
Figure 62: Choosing Rotation Action.................................................................................................... 89 
Figure 63: Rotation Operation Dialog .................................................................................................. 90 
Figure 64: Rotation Center and Rotation Axis Vector......................................................................... 90 

 



viii 

List of Tables 
 

Table 1: Drawing functions.................................................................................................................... 37 
Table 2: Operating System..................................................................................................................... 65 
Table 3: Java System .............................................................................................................................. 65 
Table 4: Graphics System ...................................................................................................................... 66 
Table 5: Python System.......................................................................................................................... 66 
Table 6: BNF of action statements......................................................................................................... 69 
Table 7: BNF expressions of filter rule statements............................................................................... 75 

 
 



1 

Chapter 1 

 

What is GOURMET 
 

GOURMET (Graphical Open User interface foR Multiscale analysis EnvironmenT) was developed in 

the OCTA project as a common user interface for various simulation engines developed in the project. All 

simulation engines in OCTA can be most conveniently used by GOURMET. Using GOURMET, you can 

(1) create your input file for the engines, 

(2) kick the engines, 

(3) see the output file of engines in various forms (numbers, graphs and 3D animations), 

(4) analyze and process the output file by your own programs. 

In some engines, you can control the running of the engines: you can see the engine status, stop and 

resume the engine, change the parameters permitted by the engines at proper moments while the engine is 

running.  

GOURMET has a special interface to the script language Python. GOURMET owes greatly to this very 

elegant language Python. Python allows you to customize GOURMET as you like. By writing python 

programs, you can add your own function to GOURMET such as preparing the input file automatically, 

showing the output file in 3D graphics by selecting certain data items, and showing the result of the analysis 

in a gnuplot graph. 

The input file of GOURMET is a text file written in a certain format called UDF (User Definable 

Format). UDF consists of two parts: the first part defines the data structure and the unit of data, and the 

second part is the data itself. In the UDF file, all data (numbers and texts) in the file have a unique name, 

and can be accessed by their name. Thus UDF file can be regarded as a data storage where any data can be 

accessed and modified in any sequence. This function is powered by Python: any data and data set in UDF 

can be used like variables in Python. 

Naming the numbers is also important for making the data file understandable for others. GOURMET 

has other functions to make your program user friendly such as (1) defining the unit for each data, (2) 

putting comments to help users of your program, (3) defining actions for any data set. You will see how you 

can achieve this by reading this manual. For more detail, see the other manual. 

The purpose of GOURMET is to facilitate the collaboration of various people who write or use 

simulation programs. Many programs are made in many laboratories in the world, but they are rarely 

written in the form usable for others since making the program usable for others takes enormous amount of 

time. GOURMET solves a part of the problem, namely to offer an interface (the other part, is of course, to 

make the program correct and robust, a more difficult part). We hope that GOURMET helps home-made 



2 

programs understandable for others, and facilitate the collaboration of many programs in the world. 

 

2001. Nov. 30 Masao Doi 

 



3 

Chapter 2 

 

Getting started 
 

2.1   Start GOURMET 
 

Followings are the command to start Gourmet. 

Windows: Go to OCTA2007 of Start menu => StartGOURMET. 

Linux: Execute "OCTA2007/GOURMET_2007/gourmet" in shell window. 

For more details of startup options, see Chapter 3.  

The first screen is Editor. (Figure 1)  

 

Python Log Window

Python Scripting Window

Tree View Window

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Startup Screen of GOURMET 

 

In Tree View Window, you can see and edit data value. 

In Python Scripting Window, you can write variety of programs in Python, such as  generating 

input data, getting computistical output data,  converting output data, etc.  

In Python Log Window, you get a result of the python script you execute.  



4 

 

2.2   Edit UDF 
 

Click on File/Open...  to open a UDF file. 

Let’s open a tutorial sample “GOURMET_200X/tutorial/3dball/baseball.udf", which simulates the 

behaviour of a ball that is thrown from the ground. 

Click “Ball” on Table View Window, and the attributes (value and unit) of “Ball” is displayed.  You can 

copy/paste on another window or application by selecting the value. See Chapter 4 for more details. 

 

Python Log Window 

Python Scripting Window 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Tree View of Editor 

 

Next, choose the radio button “Table” in View group under Unit menu. Now the View style is changed to 

Data Structure Window and Table Window. 

 

Data Structure Window shows the hierarchical data structure. 

Table View Window shows value table, where you can edit each value. 

 

In Data Structure Window, click "Goal" then "line[]". These symbols are the data names in a UDF file, 

and called UDF path. What you are looking at is the value of “Goal.line[]" in Table View Window. You can 



5 

copy/paste on another window or application by selecting the value. 

For more details, see Chapter 4. 

 

 

Table Window
Data Structure Window

Python Log Window

Python Scripting Window

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Table view of Editor 

 

2.3   Run Python 
 

At the current UDF file, let’s run a command in the python script. Type the following text in Python 

Scripting Window, and click Run. 

 

print $Ball.mass 

 

You will get the following result in Python Log Window. 

 

0.1445 

 

This is the “mass” value of the “Ball”. Use Python script to access UDF data. For more details, see 



6 

Chapter 6. 

 

2.4   Run Engine 
 

To control an engine on network, it needs to be able to communicate with GOURMET.  Start Engine 

Manager on the engine server as follows. 

Windows: Choose OCTA200X => StartEngineManager from Start menu. 

Linux: Execute "OCTA200X/GOURMET_200X/eng_man" in shell window. 

 

Now Tool/"Engine Run" menu and “Engine Control" menu are ready. 

Select Tool/"Engine Run" from the menus of the Engine Run panel. 

 

Figure 4 is Engine Run panel. Here the parameters to activate an engine are set up, and calculation starts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Engine Run Panel 

(Note)  Example of presetting and executing an engine. 
Run name: pyUserEngine 
Server: localhost 
Engine: python C:\OCTA200X\GOURMET_200X\python\samples\pythonengine.py 
Working Dir: C:\temp     （You need to create it, if it is not found.） 



7 

Params: -e 100 
Input UDF: 
Parms UDF: C:\OCTA200X\GOURMET_200X\tutorial\enginerun\parameter.udf 
Restart UDF: C:\OCTA200X\GOURMET_200X\tutorial\enginerun\resultdef.udf 
Output UDF: 
Summary UDF: C:\OCTA200X\GOURMET_200X\tutorial\enginerun\summary.udf (this file is 
created.) 
Logger: 

 

Figure 5 is Engine Control panel. It displays the items defined by "Summary UDF", and values that 

Engine Server receives from the engine. You can control the active engine, and view summary of the 

result. 

The followings are the possible actions while engine is working. 

Pause calculation,  

Stop calculation,  

Shut down (kill) engine.  

Edit parameters. 

Restart calculation.  

 

Edit Parameter
Resume Calculation

Pause Calculation

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Engine Control Panel 

 

At the upper left side of the screen, choose an executing engine that you want to edit parameters or view 

results. Tool/Engine Control menu is always available, and you can open Engine Control Panel anytime you 

need to. For more details, see Chapter 7. 

 



8 

2.5   View Result 
 

Let’s go forward to Viewer from Window/Viewer menu. Viewer is a screen where 3D object is drawn by 

python script. Figure 6 is the Viewer screen for the current UDF file. Ctrl+click on blank area of the 3D 

Object Window, and an action script gets started. Choose “show” command in pop-up menu, and “Ball” and 

strike zone are displayed on 3D Object Window.  

 

Animation Button

liderRecord S

3D Object Window

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: 3D Viewer 

 

Now press Animation on Python Panel, perform animation of the calculation result.  

 

Strike! 

 

You can move forward/backward a record by animation buttons, and move to any record by record slider, 

because the calculation result is saved as chronological data in UDF record. For more details, see chapter 8.  

Let’s go back to editor, and use 2D plotting function. Choose Window/Editor from the menus.  In Data 



9 

Structure Window, click "Calculated results". This is a function to execute action script. Choose "x-y plot” 

in pop-up menu.  

Note: The UDF paths that are executable by right-clicking are in bold font.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Plot action 

 

Gnuplot window displays x-y plotted ball location. 

There are several ways to use gnuplot tools. For more details, see Chapter 9.  

 

2.6   Tools 
 

Below are the available tools in Tool menu and File menu of GOURMET. 

File Transmitter to transport UDF file to another PC. 

Python tool to start up pure Python environment. 

gnuplot tool to start up gnuplot applications. 

Molecule builder to import molfile and PDB-formatted data to COGNAC UDF file. 



10 

File converter to import non-UDF formatted text data to UDF file. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: 2D plotting 

 

For more details, see Chapter 10.  

 



11 

Chapter 3 

 

Startup Options 
 

3.1   System Outline 
 

GOURMET（Graphical Open UseR interface for Material design EnvironmenT）is a GUI system whose 

viewing, editing, and drawing functions enable users to work on UDF file comfortably.  

GUI portion of GOURMET is based on JAVA, and UDF files are supported by library coded by C/C+. 3D 

graphics drawing is supported by OpenGL Library via JOGL.  

UDF file is processed by an interpreter language Python, and graph-plotting function is based on gnuplot.  

GOURMET serves as client-server system. When it executes calculation engine or transfers a remote file, 

GOURMET serves as client application, and Engine Manager and Data Manager serve as server program. 

Engine Manager controls remote and local engine, and Data Manager transfers UDF file between local side 

(GOURMET) and remote side (engine).  

To control engine from GOURMET, start up Engine Manager at the pc you activate an engine.  

To transfer UDF file to another pc, activate Data Manager at the receiver pc.  

The following chapter explains start-up script of Engine/Data Managers.  

Figure 9 is the outline of GOURMET system.  

 

GOURME

Java Python

gnuplot
JNI Driver JOGL 

Native Lib OpenGL 

Engine

Manager

Data

Manager

UDF File 

Engin

e 

UDF File 

Control Engine 

File Transfer 

Transmitter

 

 

 

 

 

 

 

 

 

 

Figure 9: Outline of GOURMET System 



12 

3.2   Environment Variables 
 

3.2.1   Needed Environment Variable 
 

GOURMET needs an environment variable “PF_FILES”, which is the home directory path of 

GOURMET. This variable is automatically set up if GOURMET is installed by OCTA installer.  

 

3.2.2   Optional Environment Variable 
 

There are some optional environment variables.  

 

PF_ENGINE 

Home directory path of OCTA engine, which enables GOURMET locate OCTA engine.  

 

UDF_DEF_PATH 

A directory path where UDF denifition files are located. Use OS’s own delimiter to set two or more 

directory paths. (; for Windows, : for Linux).  

 

UDF_ACTION_PATH 

A directory path where action files is located.  Two or more paths can be set up using OS’s own delimiter.  

 

PYTHON_LIBDIR 

Python library directory of GOURMET.  

 

If GOURMET is installed by OCTA installer, environmental variables of PF_FILES and PF_ENGINE are  

automatically set up. The other variables above are set up by start-up script file.  

 

The next chapter explains how to use these variables.  

 



13 

3.3   Startup Shell 
 

In the Java system, you can specify the memory size to use by Java Virtual Machine Options. It is 

recommended that you extend using memory size before starting, because the default memory size is not 

enough. Use –Xmx and –Xms options to specify maximum and minimum memory size to use for Java. 

Remember that GOURMET may consume more memory if the UDF file has more information. 

Example: 

Set 256m as -Xmx and 128m as –Xms, if your pc has 512MB memories. 

 

3.3.1   Startup Options 
 

GOURMET can accept the following start-up options. These options are used in the startup script files 

(gourmet.bat or gourmet.sh). 

-DPF_FILES="home directory path of GOURMET" 

From the directory specified here, it finds directories or files to be used as default.  

-DUDF_ACTION_PATH="action file directory path" 

From the directory specified here, it finds action files to be used as default. 

-DPYTHON_LIBDIR="directory path where Python script is saved" 

It specifies the default directory where Python script is loaded/saved.  

-DPF_MODULES="Runtime library directory path" 

It specifies a directory where UDF converter is located.   

-Djava.security.manager and -Djava.security.policy=policy_file_path 

These two options are prepared for security.  

See Engine Manager chapter for more details. 

 

 

3.3.2   Microsoft Windows 
 

To start GOURMET, choose OCTA200X => Start GOURMET from start menu, or execute “gourmet” in 

command prompt window, or double-click on gourmet.bat. Or just drag & drop a UDF file you want to 

open on “gourmet.bat” or its short-cut.  

 

3.3.3   Linux 
 

In shell terminal window, execute start-up script created by installer. 



14 

（OCTA200X/GOURMET_200X/gourmet） 

 

3.4   Engine Manager 
 

To control engine, Engine Manager should be started at the pc you activate engine. 

 

3.4.1   Startup Options 
 

-DSTAND_ALONE_MANAGER=yes 

-Djava.security.manager 

-Djava.security.policy=policy_file_path 

 

These three options are prepared for security. PCs can be used as stand-alone, if these options are set up. 

Since stand-alone pc is not accessible from any PCs on network, its Engine Manager uses a security policy 

defined by policy_file_path.  

 

Important: 

If you are not confident with the safety of the network, it is recommended that you specify your own 

security policy by system tools. 

For more information, see Engine Manager security policy in Appendix B.  

 

3.4.2   Microsoft Windows 
 
To start Engine Manager, choose OCTA200X => Start Engine Manager form start menu, or execute 

“eng_man.bat” in command prompt window.  

 

3.4.3   Linux 
 

To start Engine Manager, execute "OCTA200X/GOURMET_200X/eng_man" in shell terminal window. 

This is automatically created by OCTA installer.  

3.5   Data Manager 
 

To transfer UDF file, Data Manager should be activated at the pc receiving the file.  

 



15 

3.5.1   Microsoft Windows 
 

To start up Data Manager, execute “dat_man.bat” in command prompt window.  

 

3.5.2   Linux 
 

To start up Data Manager, execute "OCTA200X/GOURMET_200X/dat_man" in shell terminal window.  

 

3.6   Stopping GOURMET 
 

To close GOURMET, use File/Exit menu on GOURMET, or close all GOURMET windows.  

 

 



16 

Chapter 4 

 

Editing UDF 
 

To edit UDF file, select File/Open... menu, and choose the file in File open dialog. In Figure 10, UDF file 

is open in Editor.  

 
Path History 

Help pop-up 

UDF Path field View selection  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: UDF file is open in Editor’s tree view. 

 

Use Path History to choose UDF data path from the work history, or go back to the last history.  

Use View radio button to choose display type between Tree and Table.  

Use Location radio button to choose location UDF data, Global or Record. It is important to 

know the location of data you are editing.  

You can choose UDF data by typing a specific UDF path in UDF Path field.  



17 

You can see Help in pop-up for UDF data variables by placing the pointer, if help is defined.  

Some of the help has a hyperlink to a file on internet or local disk. Ctrl + right-click on the link, 

and what you choose in the pop-up should be displayed in system default browser.  

 

4.1   Edit Mode 
 

4.1.1   Edit Mode 
 

Use Edit mode to change values in UDF object. In Edit mode, all data structure that could have values are 

displayed. GOURMET is always in Edit mode, since OCTA 2003. 

 

4.2   Choosing View Format 
 

4.2.1   Tree View 
 

Tree view shows UDF data details. Tree view displays data structure and value as tree format.  

From version 4.0, you can specify the number of array items to display. See Figure 11 as an example. Only 

the top of the arrays are displayed. Ten array value[] are displayed, and the rest is “...”. The next 10 arrays 

are displayed by double-clicking on  “...”. You can change the number of arrays to expand the tree tab 

“Number of expanding” of  4.6.1 Editor Preferences Dialog. Default number of expanding is 1000.  

To display the whole or part of tree array, right-click on “...” and you will see the index of the next array in 

pop-up. Click OK, and the tree view shows the data relative to the array index specified in this pop-up.  

If the total number of data array is greater than the specified number of expansion, the array ends with 

“EndOfArray”. (See figure 12) To resume the initial tree status, right-click on “EndOfArray”, and  display 

pop-up (same as Figure 12)   

If the number of data array is lesser than specified number of expansion, you will not see either “...” or ” 

EndOfArray”. 

 

 

 

 

 

 

 



18 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Array expanded on Editor Tree View.  

 

 

 

 

 

 

 

 

Figure 12:  Pop-up after right-clicking “...” 

 

 

 

 

 

Figure 13: “EndOfArray” 



19 

 

4.2.2   Table View 
 

Table View displays the structure of UDF data. Since the format of Table View is that of relational 

database, you can exchange data with another application by simply copying/pasting ([Ctrl]+C, [Ctrl]+V). 

In Figure 14, you are looking at UDF file in Table View.  

Table Window 

Data Structure Window 

Python Log Window 

Python Scripting Window 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: UDF file is open on Editor Table View.  



20 

4.3   Choosing Data Location 
 

The initial value and the record values of UDF file have the same data name. So, you need to specify by  

location type which one to choose. GOURMET distinguishes location types and availability of data by 

color of the UDF data name. For initial value could be defined as “global_def” which enables initial value 

only to have data, or as “def” which enables both initial and record values to have data. If defined as 

"global_def", the UDF data name is blue. If defined as “def”, the UDF data name is green.  "def"-defined 

UDF data located in record is black. UDF data with no data is gray. 

Figure 15 is an example of Tree View when “Records” is chosen as data location. “global_value” is blue, 

because it is defined as “global_def”. 'common_num' and “common_pos” are green, because they have 

initial value but no value in this record. The other data is black, because these have data in this record. 

 

4.3.1   Global Location 
 

Click on Global radio button to edit Global Data. 

Note: Global Data was called Initial Data until OCTA2002. 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: Color variation of UDF objects.  

 

4.3.2   Record Location 
 

Click on Records radio button to edit/add record data. 

Record Slider is displayed at the bottom of Editor, if record data exists. You can change the location of 

record by Record Slider. 



21 

4.4   File Menu 
 

Figure16 is the File menu of Editor. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: File menu of Editor 

 

The following options are available in File menu. 

 

New Window : Opens a window to see/edit another UDf file. 

Open : Opens UDF file. (Autorun action is executed, if defined. )  

Save : Overwrites the current UDF file.  

Save As... : Saves as another file name. 

Close : Closes the current UDF file. 

Reload : Reloads all the data of the current UDF file. (Autorun action is executed, if defined.) 

Reload Action : Reloads all action files used by the current UDF file. (Autorun action is executed, 

if defined.)  

Header... : Sees/Edits header information of the current UDF file. 

Save Clipboard As... : Saves the current clipboard to as text file. 

Convert  : Converts from a text-formatted UDF file to a binary-formatted UDF file, and vice 

versa. It also imports an outside file by file filter. 

File Type : Shows the type of the current UDF file. 

Exit : Exits GOURMET. 

 



22 

 

4.4.1   Editing UDF Header 
 

To edit UDF header, choose File/Header.... Figure17 is an example of the UDF header dialog. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: UDF header dialog 

 

4.4.2   File Converter 
 

To import fixed-formatted text data which is not UDF, click on  File/Convert/ConvertFile... 

Figure 18 is an example of ConvertFile dialog.  

 

Data File: 

Data file to convert. Tab-delimited, more complicated NASTRAN bulk file, etc.  

 

Rule File: 

Filter rule file to execute conversion. 

You can find a couple of examples in $PF_FILES/filter/ directory.  

In the following example, 2nd, 3rd and 4th columns values in a data file are substituted for 

atoms[].Position.x, atoms[].Position.y and atoms[].Position.z respectively. 

Example: 

# simple example for convert molecule data from tab delimited text file 

LABEL . atoms[].Position.x atoms[].Position.y atoms[].Position.z 

 



23 

Input UDF: 

UDF definition file of conversion. 

In this example, the following UDF definition file is used.  

 

Example of Input UDF file: 

\begin{def} 

class Coodinate:{x:double, y:double, z:double} 

atoms[]: { 

  Position: Coodinate 

} 

\end{def} 

 

Output UDF 

UDF file that you output the conversion result.  

You can easily create a new conversion rule. See Appendix D for details of File Filter. 

 

 

 

 

 

 

 

 

Figure 18: File Converter Dialog 

 

4.4.3   Using Text-Formatted UDF and Binary-Formatted UDF 
 

Binary-formatted UDF helps GOURMET to read UDF file with record data of 100MB or greater. It 

speeds up GOURMET’s reading process.  

One characteristic is that a binary file’s extension is .bdf. Its record data starts with the total size of all data 

it has, which speeds up reading UDF file with a lot of records. 

To execute conversion of UDF file from text format to binary format, choose 

File/Convert/UDF =>Binary...  

To execute reverse (from binary to text), choose file/Convert/Binary =>UDF.... 

 



24 

4.5   Edit Menu 

 

Figure 19 is Edit menu of Editor.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19: Edit menu of Editor 

 

Below is the available actions in Edit menu. 

Shallow Copy mode : Copies data in tabular format. 

Deep Copy mode : Copies data in object format. 

Copy : Copies the current data on clipboard in the current copy mode. 

Paste : Pastes data on clipboard to the specified location. 

Insert Array Elements... : Inserts more than one element to the specified array data. 

Insert an Array Element : Inserts a new element in front of the specified array element. 

Add Array Elements... : Adds one or more elements after the specifies array element. 

Add an Element : Adds an element after the specified array element. 

Delete Array Elements : Deletes one or more array elements that you specify. 

Append Record : Adds a new record at the end of the existing record. 

Insert Record... : Inserts one or more new records at the specified location. 

Delete Current Record : Deletes the current record. 

Delete Record... : Deletes one or more records located at the specified location. 

Edit Current Record Label : Edit the current name of the record. 



25 

 

4.5.1   Copy/Paste Mode 
 

Copying ([Ctrl]+C) and pasting([Ctrl]+V) operations are the same as the other applications. GOURMET 

has two kinds of mode as follows. 

 

Shallow copying/pasting mode 

This is to copy/paste tabular format data as it looks. GOURMET can convert data on clipboard with other 

application.  

 

Deep copying /pasting mode 

Since UDF file has a lot of structured data, GOURMET is able to copy/paste the whole data as an object, 

which we call “deep” copying/pasting mode. In this mode, data on clip board is in python list format. In 

deep copy/paste mode, clipboard data is in Python’s list formatted.   

 



26 

4.6   View Menu 
 

Figure 20 is View menu of Editor. 

Show Global : Shows data of Global location. 

Show Record : Shows data of Record location. 

Preferences... : Shows Editor preferences dialog . 

 

 

 

 

Figure 20: Editor View menu 

 

4.6.1   Editor Preferences Dialog 
 

You can edit the preferences of display form for Editor. 

 

TreeView Tab and TableView Tab 

Figure 21 and Figure 22 shows preferences dialog for TreeView tab and TableView tab. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21: Preference/TreeView tab 

 

 



27 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22: Preference/TableView tab 



28 

4.7   Unit Conversion 
 

If the UDF file has unit definition, you can convert its unit in both Tree view and Table view. 

In Table view, right-click on the data name that you want to convert its unit. In Tree view, right-click on 

unit field of the data that you want to convert its unit. Figure 23 is an example of the unit conversion dialog. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23: Unit Conversion dialog 

 

 

 



29 

4.8   Tips for Using Editor 
 

Filtering by UDF Path field 

UDF Path field has a filtering function. Type UDF data name that has array index in Table view, and 

you get a result shown in Figure 24. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24: Filtering by UDF Path field 

 

Displaying KEY value in Table view 

If an array is KEY type data, the array’s index and KEY data are displayed in Table view. See Figure 

25. ("[0]" and "AGE"） 

 

 

 

 

 

 

 

 

 

 

 

Figure 25: Displaying KEY data in Table view 



30 

 

Data selection by Select value 

If the data is Select type, you can input data by selecting from the list. Selected data and its data 

structure of the same name in the same tree are displayed, and the rests are unshown. 

 

Inserting/deleting array elements 

In Table view, you can insert/delete the same array elements of the node that you select. 

 

Execute action 

The data names to which some action is related are displayed in bold font. By right clicking the name 

of bold font, you can execute the action script. 

 

Display help of UDF variables 

Place the mouse pointer on a data name, and a pop-up help is displayed if some help string is defined. 

If the help has underlined URL, [Ctrl]+right-click on it and choose a link item to display.  

This works for the comment pop-up of UDF file, too. For example, open Tutorial/3dball/baseball.udf, 

and place mouse pointer on a file “baseball.udf” at the left top of the screen. 

 

Inserting data into multi-dimensional array 

If you insert multi-dimensional array type data, start from the highest array element. For example, in 

order to insert 10X10 elements to blank array2[][] using GUI menu, insert ten elements to array2[], then 

next 10 elements to array2[0][], etc. This operation becomes easier by inserting elements and specifying 

value using python script as follows. 

 

for i in range(10): 

  for j in range(10): 

    $array2[i][j] = i*10 + j 

 

Display 2-dimensional array in table format 

If the data is 2-dimensional array type, its table is displayed in Table view. To choose table format in 

UDF Path field, make sure that 2-dimensional UDF path is written on field, and press Enter/Return  If 

the UDF path has three or more [], type an index in [] and press Enter/Return, then its table is displayed. 

In Table window, click on […] to display table of 2-dimensional array type. To return to 1-dimensional 

format, click on the data on Tree window. Tree window cannot display tables. 



31 

Chapter 5 

 

Using Unit System 
 

5.1   Unit Menu 
 

Figure 26 is Unit menu.  

 

 

 

 

Figure 26: Unit  menu 

 

If UDF file has a unit system, unit menu is available in Editor screen. 

 

Select Unit Set : Chooses an available unit system, and display values. 

Browse Default Unit : Displays a list of default units. 

Unit File Import...: Imports another unit system. 

 

Important: 

Unit conversion is effective within GOURMET, but UDF’s data value is always in the unit system defined 

by engine. 

 

5.2   Choosing Unit System  
 

Figure 27 is Select Unit Set dialog. You can choose a unit system into which the data is converted, and 

display all the data in that unit system. The default unit system is defined by engine.  

 

 

 

 



32 

 

 

 

 

 

 

Figure 27: Select Unit Set dialog 

 

5.3   Importing Unit System 
 

You can import a unit system into GOURMET using Unit File import... menu.  

For how to define unit system files, see UDF SYNTAX REFERENCE. 

Below is an example of a unit system file.  

 
\begin{unit_system}{"MYSI"} 
CONSTANT=9.9999 
[kg] 
[myLength]=[10*m] 
[myTime]=[ms] 
[A] 
[myTemp] = [mK] 
[mol] 
[cd] 
[rad] 
[sr] 
[Hz]=[1/s] // frequency 
[N]=[kg*m/s^2] // force 
[Pa]=[N/m^2] // pressure 
[J]=[N*m] // energy 
[W]=[J/s] // power 
[V]=[W/A] // voltage 
[Wb]=[V*s] // magnetic flux 
[T]=[Wb/m^2] // magnetic flux density 
\end{unit_system} 
 

 



33 

5.4   Displaying Engine Unit System 
 

In "Browse Default Unit..." menu, the unit system defined by simulation engine UDF file is shown. See 

Figure 28.  

 

 

 

 

 

 

 

 

 

 

Figure 28: Browse Default Unit dialog 

 

 



34 

Chapter 6 

 

Scripting with Python 
 

Here, you work on data described on UDF in python script language on GOURMET, such as referring, 

editing, converting unit, adding records, drawing 3D object and graphs. All the script processing is 

executed by python interpreter system. So, both Editor and Viewer have its own Python Scripting window. 

 

Python Log Window 

Python Scripting Window 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29: Python Script Window in Editor 

 

GOURMET has four types of executing script as follows.  

 

- Execute script in Python scripting window in Editor.  

- Execute script in Python scripting window in Viewer. 

- Execute an action in Editor.  

- Execute a picking action in Viewer. 



35 

 

6.1   Tools in Python Panel and Python Menu 
 

The following operations are available in Python menu of Editor, and Python tab below Editor.  

 

Run : Executes script in Python Scripting window. Its result and an error message are displayed 

in Python Log window. If successfully completed, GOURMET memorizes the script as execution 

history, and the history can be reused. Script can be executed by pressing “Run” button in Python 

tab in Editor. 

Clear : Clears the contents in Python Scripting window. 

Load... : Loads a scripting text file to Python Scripting window. 

Save... : Saves scripting text in Python Scripting window to a file. 

Save Lib... : Python Script is converted by Python pre-parser, and saved in a file. The converted 

Python script can be executed in pure Python environment. 

Save History... : Saves history of Python Scripting window to a file. Saved history can be resued 

for future sessions. 

Load History... : Loads Python Scripting window history from a file. Saved script history can be 

reused. 

Previous History (<) : Displays the previous history in Python Scripting window. 

Next History (>) : Displays the next history in Python Scripting window. 

Clear Log : Clears Python Log window. 

AutoRun mode : “on” to automatically execute “Run” every time you change record by slider at 

the bottom of the screen. Viewer is always in AutoRun mode, since it is drawn by the executed 

script. 

 

6.2   Python Scripting in Editor 
 

You can execute any script available in Python system. Below is an easiest example.  

 

print "hello GOURMET" 

 

The same method works for expansion of GOURMET Python script. Script expansion means Python 

expansion to access UDF data tree.  

Below is an example of useful Python expansion functions. To access UDF data, use a UDF data name 



36 

with "$" prefixed.  

 

print $Ball.mass 

$Environment.gravity = 9.8 

 

6.3   Python Scripting in Viewer 
 

In Viewer, in addition to the same script as Editor, 3D drawing functions are available, such as basic 

drawing function “sphere”, structure drawing function “MeshField”.  

 

Example:  

pos = $Initial_condition.position 

attr = [1.0, 0.0, 0.0, 1.0, $Ball.diameter] 

sphere(pos, attr) 

 

Table 1 is a list of basic drawing functions of GOURMET. See Python script manual for more details.  

Name of function Remark 

line(coordinate1,coordinate2,[r,g,b,a])) RGB and transparency are specified.  

line(coordinate1,coordinate2,attribute_id) Drawing attribute ID is specified.  

point(coordinate,[r,g,b,a])  

polygon(coordinate list,[r,g,b,a])  

polyline(coordinate list,[r,g,b,a])  

disk(coordinate1,[r,g,b,t,radius,vx,vy,vz])  

ellipse1(coordinate1,[r,g,b,t,a,b,vx,vy,vz])  

ellipse2(coordinate1,coordinate2,[r,g,b,t,a,vx,vy,vz])  

cylinder(coordinate1,coordinate2,[r,g,b,t,radius])  

sphere(coordinate1,[r,g,b,t,radius])  

ellipsoid1(coordinate1,[r,g,b,t,a,b,c,vx,vy,vz])  

tetra(coordinate1,coordinate2,coordinate3,coordinate4,[r,g,b,t])  

cube(coordinate1,length,[r,g,b,t])  

cone(coordinate1,coordinate2,[r,g,b,a,radius])  

arrow(coordinate1,coordinate2,[r,g,b,t,radius,height])  

text(coordinate,message,[r,g,b,t,size])  

clearDraw()  



37 

Table 1: Drawing functions 

 

6.4   Action in Editor 
 

In Editor, choose an action from a pop-up menu which is displayed by right-clicking on a UDF data name 

in bold font. The details of an action is described in action file. GOURMET finds an action file described in 

UDF header from the directory either where the UDF file is located, or where is specified by environment 

variable UDF_ACTION_PATH. 

 

Example of action file: (GOURMET_XXXX/tutorial/3dball/baseball.udf) 

 

action Ball: setColor(BallColor="0|1|2|3|4|5") : color = eval(BallColor) 

action Ball: show() : \begin 

color=[1.0, 0.0, 0.0, 1.0, $Ball.diameter] 

def drawGoal(): 

  lines = $Goal.line[] 

  polyline(lines,0) 

drawGoal() 

if $Calculated_results.position.y > 0: 

  pos = $Calculated_results.position 

  sphere(pos, color) 

\end 

 

Click ‘Ball’ in Editor. Figure 30 shows a pop-up, where you choose setColor. setColor specifies color 

information of ‘Ball’.  

 

 

 

 

 

 

 

 

 

 



38 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30: Example of action you take in editor.  

For more details of action file definitions, see Appendix C.  

 



39 

6.5   Picking in Viewer 
 

Viewer displays and chooses a list of actions related to a UDF data object that is drawn by a drawing 

function (CognacAtom and CognacBond, or setDrawRelation and resetDrawRelation).  

For example, in Figure 31, if you [ctrl]+click on a molecule structure, you will get a pop-up of related 

actions. Select one action, and execute it.  

For more details of action file definitions, see Appendix C.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31: Actions in Viewer 

 

6.6   Tips for Using Python Panel 
 

You can use [Ctrl+C]/[Ctrl+V] for copying/pasting text. Since data is copied on a clipboard in 

table format, you can DeepCopy/paste and assign it to python variable. 

Text edited in Python script window can be restored (undo button) and repeat (redo 



40 

button).Remember that undo and redo will not work after switching the whole script by history 

function. 

Python’s error message in Python Log window includes column location of that error. If you 

double-click on the words including "line", script error row highlights in python script window. 

You can change size of each window by a divider between Python script window and Python Log 

window. 

Pausing Python execution. You can stop Python script whenever you want. You can also stop 

action being executed in Python script.  Once script execution is being stopped, data processing is 

also stopped. To restart it, you need to close the UDF file first. 

 



41 

Chapter 7 

 

Running Engine 
 

If GOURMET is supported by some engine, you can start up and control engine from GOURMET via 

network. At least, an engine has to be able to input/output UDF file, and should be programmed by platform 

interface library like OCTA engines (COGNAC,SUSHI,...).  

If an engine manager has to be started at engine server side, executing/controlling engine can be done by 

Tool/"Engine Run" and "Engine Control".  

 

7.1   Engine Manager 
 

In order to execute/control an engine from GOURMET, Engine Manager has to be started at the pc where 

you execute an engine. If the pc is local, activate Engine Manager on that pc.  

 

Important: Engine is controlled in local pc, and independent from an engine in other pc. If you are not 

confident with the safety of the network, it is recommended that you specify security policy by your own 

OS system tools. See Appendix  “Security policy of Engine Manager” for more details.  

 

7.2   Engine Run Panel 
 

Choose Tool/Engine Run menu, and open Engine Run Panel. See Figure 32. This is where you specify 

various conditions for starting up an engine. Below is the summary of each contents to specify. 

 

Run name : Label of execution. 

Server : “localhost” if an engine runs locally. Server’s host name or its IP address if an engine 

runs on server. 

Engine : Script or module for executing engine. 

Working Dir : Working directory while executing an engine. 

Params : Engine execution parameters (or command line parameters). 

Input UDF : Input UDF file. 

Params UDF : Parameter files that is editable while an engine is executed. 



42 

Restart UDF : Restart file 

Output UDF : Output UDF file 

Summary UDF : Summary UDF file 

Logger : Script or module for watching calculation. 

Always Use... :  

If it is ON, a current UDF file and its directory is displayed. 

Save info & close... : 

If it is checked, all the specifications are saved and Engine Panel is closed. 

You can specify multiple options of execution control. 

New : Newly specify engine condition. 

Note: Name of engine execution is displayed on List. 

Remove : Remove engine specification items. 

Duplicate : Duplicate engine specification items. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 32: Engine Run Panel 

 

 

 

 



43 

7.3   Engine Control Panel 
 

Engine Control panel is where you control a running engine, and see the summary of result. See Figure 

33.  

 

Edit Parameter 

Resume Calculation 

Pause Calculation 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 33: Engine Control Panel 

 

If multiple engine processes are running simultaneously, you can switch from one screen to another by 

choosing on a combo box (format of  [MM/DD HH:MM:SS] run name) at the upper-left of the screen.  

In the Report & Graph SummaryData panel, the contents of summary UDF file is displayed at an interval. 

 

In the upper text area, report_attribute.label[], report_data.value[], and 

graph_attribute.label[] are displayed in text.  

In the lower graph area, the title “graph_attribute.title” and graph “graph_data.item[].value[]” 

are displayed. 

 

The following buttons control engine processes.  

Pause: Pauses a part of engine process. 

Parms UDF… : While the engine pauses, it starts up Editor. 

Resume : Transfers a parameter file to engine server, and resumes executing engine process. 

Stop : Stops engine process. 



44 

Kill : Shuts down engine process. 

Stopped or killed engine process can be deleted on Remove Info screen. If “also Remove Working dir" 

is ON, working directory is also deleted. 

Show Detail... :  Displays details of engine process that is started on Engine Run Window. 

Start Logger : Starts Logger that is specified on Engine Run panel. 

Set Refresh : Sets interval of refreshing Report & Graph Summary Data panel. 

 

7.4   Tips for Using Engine Control 
 

To reconnect to engine control panel 

If an engine processes longer than one day, it keeps processing even if engine control panel is 

closed or GOURMET is closed. When you start GOURMET again later, you can reconnect to Engine 

Control panel by choosing Tool/Engine Control... menu. 

To view the result of engine process 

Go to pull-down menu at the upper-left of Engine Control panel. 

 



45 

Chapter 8 

 

Viewing 3D Object 
 

8.1   Viewer Startup Screen 
 

Viewer is a window where you can draw 3D object. Enter Viewer either by choosing Viewer in the 

Window menu, or by executing drawing script, in Editor. Figure 34 is the start up screen.  

 

3D Object Window

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 34: Start up Viewer 

 

Viewer screen consists of the menu, 3D object panel, and python panel. The border between the 3D object 

panel and the Python panel can be moved by mouse pointer. 

 



46 

8.2   3D Object Window 
 

The following display operations work as the same as other 3D applications. 

 

Round (drag) 

Zoom (right-click drag) 

Walk through ([alt] or [shift], and right-click drag) 

Walk side ([alt] or [shift], and click drag) 

View direction (Go to View menu) 

Background color, number of division (Go to Display menu) 

Capture drawing image (Go to Options menu) 

The other drawing options (Go to Options menu) 

Animation (Go to Python panel) 

 

8.2.1   Picking 3D Object Operation 
 

You can pick a UDF object that is drawn by a special drawing function (CognacAtom & CognacBond, or 

set DrawRelation & reset DrawRelation), and dislay a pop-up of available action. 

Default action menu is displayed by [Ctrl]+clicking on the background, if any default action (or actions 

to the whole UDF) is defined. 

If the 3D object is drawn by "CognacAtom & CognacBond" function, and at least one action is linked to 

the UDF path, you can display the UDF action menu by [Ctrl]+clicking on the drawing target. 

You can choose multi-picking mode by Picking/Multi Picking Mode menu, or [Ctrl]+M. 

See Appendix C for more details of action file definitions. 

 

8.3   Python Window in Viewer 
 

Python window of Viewer has the same functions as Editor. In addition, it controls 3D animation by 

Start/Stop/Backward/Forward buttons at the bottom. 

 

8.3.1   3D Object Animation 
 

The UDF has  two or more records, you can change the record to display by operation button (Start, Stop, 



47 

Backward, and Forward), or a slider at the bottom of the screen. In Viewer, the last Python script is 

re-executed by moving another record you specify.   

 

Start: 

Animation starts from the current record to the end record.  

 

Stop: 

Stops animation.  

 

Backward: 

Animation starts from the current record to backward direction. An operation is kept going while you 

push this button, and stopped if you leave the button. 

 

Forward: 

Animation starts from the current record to forward direction. An operation continues while you push 

this button, and stops if you leave the button. 

 

8.4   Menu of Viewer 
 

8.4.1   File Menu 
 

 

 

 

 

 

 

 

Figure 35: File menu of Viewer 

 

Open...: Opens UDF file 

Close: Closes UDF file 

Reload: Reloads current UDF file. 

Reload Action: Reloads action files linked to the current UDF file, and executes auto-run action if 



48 

exists. 

Convert : Converts text-formatted UDF file with binary-formatted UDF file. Or, displays a screen 

where you import any outside file using file filter. 

Exit: Exits GOURMET. 

 

8.4.2   View menu 
 

Here, you can change directions of 3D object window.  

 

Standard: 

All the objects in 3D panel are displayed. Click on Run button, and execute drawing script, the View 

goes in Standard state. 

 

Reset: 

Resets all the operations you have done in 3D panel, and returns to the last Standard state.  

 

 

 

 

 

 

 

 

Figure 36: View menu in Viewer 

 

Direction...: 

Changes the direction of View in 3D panel. Standard direction and current direction. 

Direction is specified by a vector from an eye point to a view direction in View set-up dialog. 

The distance between an eye point and a center of all drawing objects are kept constant regardless of 

the size of the direction vector. 

 

View Register: 

Regist/Call a scene of drawings, and erases the registration. Maximum number of view registration is 

five, from F1 to F5.  To register, press [Ctrl]+function key. To call, press function key only. 

The font of F1～F5 becomes bold, once it is registered. Registration will not be deleted after Viewer 



49 

screen is closed.  

Figure 37 is the text screen of current view data which is displayed by choosing Text of View Register. 

You can keep this text data, and use it another View screen.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 37: Current view data in Text screen 

 

Press Change button to change drawing scene in accordance with the view data in text screen.  

 

Rotation: 

Left: Rotate to the left at a specified angle. 

Right: Rotate to the right at a specified angle. 

Up: Rotate to the upward at a specified angle. 

Down: Rotate to the downward at a specified angle. 

Clockwise: Rotate clockwise at a specified angle. 

Anti-clockwise: Rotate anti-clockwise at a specified angle. 

Angle: Specifies an angle by either key (cursor and [] key) or the above menu. 

 

8.4.3   Display Menu 
 

Figure 38 is the display menus of 3D object window. 



50 

 

 

 

 

 

 

 

 

 

Figure 38: Display menu of Viewer 

 

BackGround: 

Black: Blacken the background. 

White: Whiten the background. 

Any...: Change color to any color specified in color dialog. 

Image...: Paste a JPEG or PNG-formatted image data. 

 Fit max: Maximize the size of the image to fit the screen so that the whole image is displayed, 

without changing its aspect ratio. 

 Fit min: Maximize the size of the image to cover the whole screen, without changing its aspect 

ratio. 

 Raw size: Paste the image in its original size. 

 Fit canvas: Fit width and height to the size of the screen. 

 

Axis: 

Switch on/off displaying XYZ axis.  

 

Perspective: 

Switch displaying between Perspective projection and Orthographic projection. 

 

Wire Frame Movement: 

Switch on/off wire frame movement which speeds up pointer operation (round, move and zoom). 

 

Lighting: 

Switch on/off lighting effect. 

An object looks stereoscopic with lighting effect on. 



51 

Colors of object looks single regardless of the direction of View with lighting effect off. 

Note: Sphere's 3D appearance is lost with lighting effect off.  

 

Smooth: 

Smooth a line displayed.  

 

Draw Size/Width/Divisions...: 

Size of Point, width of line, number of polygon division of sphere, ellipsoid, cylinder, cone, disk, 

and ellipse. 

Note: The more you increase the number of polygon division, the smoother an object is displayed, but it 

consumes more memory, and causes deterioration in response. 

 

8.4.4   Picking menu 
 

 

 

 

 

Figure 39: Picking menu in Viewer 

 

Multi Picking Mode 

Switch between single picking and multiple picking. 

Clear all picking 

Clear all picking status. 

Picked Object Color... 

Change color of picked object in Color Dialog. 

 

8.4.5   Python Menu 
 

 

 

 

 

 

 



52 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 40: Python menu in Viewer 

 

These are the same as Python panel buttons. See 6.1 for more details.  

 

8.4.6   Options Menu 
 

 

 

 

 

 

Figure 41: Option menu of Viewer 

 

ImageCapture: 

You have a couple of options in regards to saving drawing area as an image file.  

- Now Capture GraphicPanel 

Save the current drawing area in an image file. 

- Auto Capture GraphicPanel while animation 

Switch ON/OFF auto–saving drawing area as image files. 

Note: Below is the default image file path. 

(BaseDir)/(UDFFileName)/graphic/(RecordNumber).jpg 

例: 



53 

ImageCapture/blend_eq_uot.udf/graphic/999.jpg 

- Save Option...: 

Specify the directory where an image file is saved. Choose the format of image file (either JPEG or 

PNG). Specify Quality(0-100) for JPEG-formatted file. 

 

Draw Misc...: 

Specify operations for drawing.  

- Clear Option: 

Choose either running a new object before clearing the former drawing, or keeping the former 

drawing.  

- Cache Type for animation: 

Specify how to work with drawing object when you execute animation.  

+ USE UDF-Cache 

Execute a drawing script, and draw its result. This mode avoids mis-connecting drawing 

object and its related UDF data.  

+ USE Viewer File-Cache 

Speed up the second or later drawing by using file-cache, only if the drawing script has no 

change from the first one. This is possible because drawing contents of each Record are 

automatically saved in Viewer File-Cache.  

+ USE Viewer Memory-Cache 

Speed up the second or later drawing by using memory-cache, only if the drawing script has 

no change from the first one. This is possible because drawing contents of each Record are 

automatically saved in Viewer Memory-Cache.  

Note: Viewer File-Cache and Viewer Memory-Cache are not effective other than the following 

four operations.  

+ Animation operation (Start,Stop,Prev,Fwd)  

+ Animation slider operation 

+ Inputting in Record display text area 

+ Inputting in Record Label text area 

- Animation Interval[millisecond]: 

Input interval between animations in millisecond.  

- Animation Slider: 

Choose either drawing every Record that mouse pointer is placed, or drawing only the last 

Record on which you release the mouse button, while you drag the animation slider.  

- Auto Rewind: 

Specify if you repeat animation or not.  



54 

 

Arrow Shape...: 

Specify the shape of the array.  

- User arrow length scale 

Specify the scale of length for line part of the array drawn by 

arrow([x1,y1,z1],[x2,y2,z2],[r,g,b,a,h,w,s]). Normally 1.0. 

- Mesh arrow length scale 

If you draw vector value specified on mesh grid point by meshfield, you specify the length of 

array line by how many times to multiply the maximum mesh size. (Normally 1.0)  

- Arrowhead Shape 

Choose the arrow end either Cone or Line. For line, you can specify the number of lines.  

- Auto arrowhead size 

"Resize" means to draw an arrow head at a specified rate to an head of its maximum line length 

“scale”. "aspect" is a ratio of arrow head width to arrow head length. 

 

Attribute File Setup...: 

Choose set-up files for displaying, such as colors. For more details of set-up files, see Drawing 

Attributes file of Python Script Manual. 

 

Python/Plot: 

Specify a Font and History to display on Python/Plot script panel.  

- Font... 

Specify font name, style and size, for Python/Plot script panel.  

- History... 

Choose either save execution history of script or not. Also specify maximum number of history.  

 

 



55 

Chapter 9 

 

Making Plot 
 

You can use gnuplot to analyze the calculation result.  

 

9.1   Plot Tool 
 

You can switch between Python panel and Plot panel by Python/Plot tab. Figure 42 is the Plot panel.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 42: Plot tab panel 

 

The purpose of the graphic function of Plot tool is to visualize data easily. In order to specify the graph 

format in detail, either edit plot command created by Plot tool, or change parameters by gnuplot interpreter.  

Following is the steps to create plot.  

 



56 

Display the data you want to plot in Table view. 

Press Make button of Plot tab panel, and plot command and data are created. A plot data file 

"plot.dat" is created in the current directory. 

Edit plot command. 

Press Plot button. gnuplot application receives plot command and data, and gets started. A plot 

command file "cmd.dat" is created in the current directory. Figure  43 is an example of 

displaying plot by gnuplot application. 

 

 

 

 

 

 

 

 

 

 

 

Figure 43: gnuplot  graph sample 

 

9.2   Graph Sheet Object 
 

GOURMET has a work sheet object called graphsheet for each active UDF, where you store array data. 

You can also store plot data. 

Its data, normally created by python script, can be directly typed out as other UDF object.  

To facilitate building a worksheet, available Python functions are to add/delete a row, and adding a data 

column.  

 

9.2.1   Python Function for GraphSheet 
 

Below is an example of Python script that operates graphsheet. For more details, see "GOURMET Python 

Script Manual". 

 

Example: 



57 

from math import * 

createSheetCol(0,'Refference') 

createSheetCol(1,'Position') 

n = totalRecord() 

for i in range(0,n): 

    jump(i) 

    rsize=getSheetRowSize() 

    if rsize <= i: 

        insertSheetRow(rsize,1) 

        setSheetData(0,i,[-10*sin(pi*i/n)]) 

        setSheetData(1,i,[get("Structure.Position.mol[0].atom[0].x")]) 

 

9.3   Plot Scripting 
 

GOURMET has a gnuplot interface library called gunplot.py. It is used in the following Python script. 

 

Action script 

Script window 

Logger script 

 

Below is an example of plot script. 

 

action Calculated_results : xy_plot() : \begin 

import gnuplot 

x = [] 

y = [] 

for rec in range(totalRecord()): 

  if $Calculated_results.time > $Solver.tmax: 

    break 

  jump(rec) 

  x.append($Calculated_results.position.x) 

  y.append($Calculated_results.position.y) 

gnuplot.plot(data=[x,y],labels=['x','y'], title='xy-position') 

\end 

 



58 

9.3.1   Using Plot Script Library 
 

Followings are the method summaries of each plot script. For the detailed specifications, see 

GOURMET_2007/python/gnuplot.py.  

 

udfdata(udf, datafile='plot.dat', labels, axis='field') 

Write plot data.  

“udf” is a UDF Manager object. “datafile” is a file name. “labels” is a list of data names to be 

plotted. ”axis” (either field or row), identifies the data series to be plotted.  

 

rowdata(datafile='plot.dat', datalist, axis='row') 

Write plot data.  

“datafile” is a file name.  “datalist” is a list of plot data. ”axis” (either field or row), identifies the data 

series to be plotted.  

 

start(cmdfile='plot.cmd') 

Invoke gnuplot. “cmdfile”includes gnuplot command.  

 

gnuplot(commands, cmdfile='plot.cmd',) 

Write commands to “cmdfile”, and invole gnuplot. “cmdfile” includes gnuplot command.  

 

plot(datalist, title='', labels, attrs, udf,cmdfile='plotficmd',datafile='plot.dat', axis='field') 

Create “cmdfile, and invoke gnuplot.  

“datalist” is a list of plot data, which is ignored if “udf” is specified.  “title” is a title of plot. “labels” is 

either a plot label or UDF path. “attrs” is a graph style of gnuplot, such as ‘lines’ and ‘points’.   

“udf” is an instance of current UDFManager. “cmdfile” is a command file path. “datafile” is a data file 

name referenced by cmdfile. “axis” (field or row) identifies the data series to be plotted.  

 

 



59 

Chapter 10 

 

Using Tools 
 

10.1   File Transmitter Tool 
 

File Transmitter transfers UDF file between UDF servers whose Data Manager is active. File Transmitter 

provides the following features.  

 

Transfer files between remote pcs whose Data Manager is active.  

Provide basic file operations such as Make Dir, Rename, and Delete. 

Display header information of UDF, such as engine type and version. 

 

If you use it on local pc, Data Manager does not have to be active. 

The left side of the screen is the directories of the current UDF. If UDF is not opened, it shows those of 

GOURMET’s execution path, instead. To connect your pc with remote pc, type host name or IP address in 

the text area of Remote Host, and press Connect button. 

In Figure 44, Transmitter is started, and connected with a remote host pc. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 44: Initial screen of File Transmitter 



60 

 

After being connected, the directories displayed in the Remote Host panel are either those specified by 

execution parameters, or execution directories. If the Remote Host runs as Local, Remote Host and Local 

Host display the same directories. 

 

Transfer files between local pc and remote pc.   

Choose any file in either Local Host or Remote Host, and press => (Send) or <= (Receive). 

 

Basic file operations in Local and Remote.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 45: Transmitter Connected 

 

Display UDF header information. 

Show Header Info displays the header of the selected file. 

 

10.2   Python Tool 
 

Invoke a pure Python interpreter without GOURMET extension. Start-up parameters can be specified by 

Application Setup. See 10.4. 

 



61 

10.3   Gnuplot Tool 
 

Invoke gnuplot application. Start-up parameters can be specified by Application Setup. See 10.4.  

 

10.4   Application Setup Tool 
 

Specify Python module in Python Application, Python start-up parameters in Python Argument. Also, 

specify gnuplot module in Gnuplot Application, Gnuplot start-up parameters in Gnuplot Argument.  

Figure 46 is Application Setup tool dialog.  

 

Important: 

File names that have one or more space should be enclosed in “ ”.  

(Example） 

Python Application:"C:\OCTA200X\GOURMET_200X\bin\win32\Python\pythonw.exe" 

Python Argument: "C:\OCTA200X\GOURMET_200X\bin\win32\Python\Tools\idle\idle.pyw" 

Gnuplot Argument: "C:\OCTA200X\GOURMET_200X\bin\win32\gnuplot\wgnuplot.exe" 

 

 

 

 

 

 

 

 

 

Figure 46: Application Setup 

 

10.5   Molecular Builder Tool 
 

Import molfile-formatted files and PDB-formatted files to UDF file such as COGNAC UDF.  

Below are the Molecule Builder’s functions. 

Read molfile-formatted or PDB-formatted file by a specified file filter.  



62 

Auto-create bond angle and dihedral angle.  

Convert the above data following the definitions of Input UDF file.  

Save the result to the specified Output UDF file.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 47: Molecule Builder 

 

 

10.6   Start-Up Environment Parameter Tool 
 

Edit details of environment set-up file for starting up GOURMET. 

（platform_win32.ini,platform_linux.ini） 

Followings are the available environment variables.  

Installation directory of Python (PYTHONHOME) 

Search directory of Python script (PYTHONPATH) 

Execution path (PATH) 

Library path (LD_LIBRARY_PATH of Unix/Linux) 

 

Followings are the available set-up specifications by group.   

Search directory of action file (UDF_ACTION_PATH) 

Search directory of Python script (PYTHONPATH) 

Search directory of Include UDF file (UDF_DEF_PATH) 

Execution path (PATH) 

Library path (LD_LIBRARY_PATH of Unix/Linux) 



63 

 

To set up the environment parameters by group, choose the top directory of a group and automataically 

specify the following directory path as a group’s start-up environment. 

Search directory of action file (UDF_ACTION_PATH) 

 "Top directory"+"/action" 

Search directory of Python script (PYTHONPATH) 

 "Top directory"+"/python" 

Search directory of INCLUDE UDF file (UDF_DEF_PATH) 

 "Top directory"+"/udf" 

Execution path (PATH) 

 "Top directory"+"/bin" 

Librayr path (LD_LIBRARY_PATH of Unix/Linux) 

 "Top directory"+"/lib" 

 

To avoid automatic specification, check “detail".  

 

This tool replaces each of  the following key words included in an environment set-up file to its right-hand 

side.  

%ARCH%,${ARCH} : architecture name 

%PF_FILES%,${PF_FILES} : PF_FILES environment variable 

%PF_ENGINE%,${PF_ENGINE} : PF_ENGINE environment variable 

%OCTA_DIRECTORY%,${OCTA_DIRECTORY} : OCTA installation path 

 

When GOURMET is started, Environment variables creation tool (gourmet_init) reads environmental 

parameters, and creates environmental variables necessary for starting up. See Appendix G for the details of 

environment variable creation tool.  

 

Figure 48&49 are the examples of start-up environmental parameters.  

 

 

 

 

 

 

 

 



64 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 48: Python tab of Start-up environmental parameters tool 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 49: Group tab of Start-up environmental parameters tool 



65 

Appendix A Operation environment 
 

A.1   Operating System 

 

Operating System Version Comments 

Microsoft Windows-NT (Intel) 4.0 SP6 Tested 

Microsoft Windows 2000(Intel) SP4 Tested 

Microsoft Windows XP (Intel) SP1, SP2 Tested 

Microsoft Windows Vista  Testing 

RedHat Linux (x86) 9.0J Tested 

Red Hat Enterprise Linux (x86) 3 Tested 

Turbo Linux (x86) 10 Testing 

Fedora Core 3, 5, 7 Tested 

Fedora Core x86_64 5 Tested (32bit mode) 

MacOSX Tiger 10.4.7 Intel Core Duo 2.16GHz 

Power PC G5 Dual 2.5GHz 

Tested 

MacOSX Panther 10.3.9 Power PC G4 1GHz 

Tested 

Table 2: Operating System 

 

A.2   Java System 

 

Java System Version Comments 

SUN Java2 SE/RE 1.4.2 Tested 

SUN Java2 SE/RE 1.5.0(5.0), 6 Tested 

Table 3: Java System 

 

A.3   Graphics System 
 



66 

Graphics System Version Comments 

OpenGL Mesa 1.3 or newer Mesa 4.0.4 or newer 

JOGL JSR-231 1.0.0 Tested 

JOGL JSR-231 1.1.0 Windows Tested 

Linux Depends on Linux kernel version 

Table 4: Graphics System 

 

 

A.4   Python System 
 

Python System Version Comments 

Python 1.5.2、2.1.x、2.2.x Tested 

Python 2.3.x, 2.4.x Tested 

Scientific Python Depends on Python version Tested 

Numerical Python Depends on Python version Tested 

Table 5: Python System 

 

Python 2.2.3: Numerical Python 23.1, Scientific Python 2.4.5 

Python 2.4.4: Numerical Python 23.8.2, Scientific Python 2.4.11 

 



67 

Appendix B Security policy of Engine 
Manager 

 

EngineManager works as a server that responds to a demand from its client application GOURMET. 

 

(RMI) Engine Manager GOURMET  

 

Its communication path is Java RMI (Remote Method Invocation), which starts or pauses engine, and 

transfers UDF files. Security checking features (authentication system and file access permission) are not 

implemented. 

These services are designed so that priority is given to execution speed. It expects that two or more users 

will not use the same resource (the same directory in the same server at the same time) simultaneously. 

 

So the following cases may lead to errors, 

 

Multiple clients take action in the same directory. 

Delete or edit any file to which an engine accesses. 

 

Once GOURMET and EngineManager connected, that engine will not accept any demands from the other 

Gourmet. Yet, an error could happen to its files and directories because they are open to Gourmet.  

 

Important: 

Engine manager does not authenticate clients.  

Engine manager does not limit executable modules. 

 

To avoid such security risks, the following actions could be effective.  

System administrator prepers user ID who can start EngineManager, and who has authority of 

the necessary minimum. 

If engines and Gourmet are used in a local machine, use STAND ALONE MANAGER option. 

With this option, (stand alone) EngineManager started by eng_man_alone cannot be accessed 

from other machines. 

If EngineManager starts on Microsoft Windows, you can avoid making connection from other 

machines by using the filter of the communication port that EngineManager uses. 

In order to perform this, you use the tool of OS attachment or the product for security. 



68 

Appendix C Action definition 
 

C.1   Grammar of Action file 
 

Below is the grammatical rule of the action file. 

 

comments 

The line is starts with ‘#’, the whole line is comment line. 

import 

Import statement is the same as Python import one. 

action 

Action keyword is placed at the top of action statements, whose next words is a target data name of the 

action. If the target data name is omitted, the target of the action statement is the UDF file. 

autorun 

Autorun keyword defines actions executed when UDF file is opened or reloaded. But the orders of 

executing actions defined with autorun are not defined. 

target 

Target is a UDF data name in an action statement. It is a trigger of executing action. If the UDF data 

name displayed in the editor or viewer is clicked, an action is executed or actions selection list is 

displayed.  

action name 

Action name is displayed on an actions selection list in the pop-up dialog, when target is clicked. 

action parameters 

Action parameters are the arguments of the action. With action parameters, input areas are displayed 

on an action dialog. 

If a parameter is string type and divided by ‘|’, a combo box is displayed on an action dialog. If a 

parameter is string type and ‘…’, a file selection dialog is displayed by right clicking the […] in an 

action dialog. 

 

Table 6 shows BNF（Backus Naur Form）of action statements. Boldface words are action keywords. 

UPPERCASE words are tokens. 

Name of a syntax rule (non-terminal symbol): Components of a syntax rule 
statement: 

comment_statement 
import_statement 



69 

actions 
\n 

comment_statement:  
# any_statement \n 

import_statement: 
 import python_module \n 
actions: 
 action target : action_statement \n 

autorun : action_statement \n 
target:  

NOTHING 
UDF_DATA_NAME 
target, UDF_DATA_NAME 

action_statement:  
 ACTION_NAME ( parameters ) : body 
parameters: 

NOTHING 
parameters , PARAMETER_NAME 
parameters , PARAMETER_NAME = initial_value 

initial_value: 
NUMBER 
"STRING" 
"string_selection" 
"filepath_selection" 

string_selection: 
NOTHING 
STRING 
string_selection STRING 

filepath_selection: 
 [...] 
body: 

python_function 
\begin python_statements \end 

 

Table 6: BNF of action statements 

 

C.2   Special words in python statement 
 

The following words have special meanings of Python statements in an action. 

 

parameter name 

A parameter is replaced by an argument value. In example 1, name is replaced by "time" or an input 

value. 

self 

self is replaced by a target name. In example 1, ‘self’ is replaced by ‘Calculated_results.time’. 

Example 1 (target:Calculated_results.time、action name:add_trajectory) 



70 

 

Example 1: 

action Calculated_results.time : add_trajectory(name="time") : \begin 

try: 

    deleteSheetCol(name) 

except RuntimeError: pass 

createSheetCol(getSheetColSize(),name) 

for rec in range(totalRecord()): 

    jump(rec) 

    setSheetData('time', rec, 'self') 

\end 

 

If there are two or more target data names, keywords "self1", "self2", … are replaced by target names 

respectively. In viewer in the mode of multiple picking, you first select 

Set_of_Molecules.molecule[0].atom[1], 

and next 

Set_of_Molecules.molecule[0].atom[5], 

in following example 2, 

self1 is replaced to Set_of_Molecules.molecule[0].atom[1], 

self2 is replaced to Set_of_Molecules.molecule[0].atom[5]. 

 

Example 2: Sample for multiple picking action 

action Set_of_Molecules.molecule[].atom[], Set_of_Molecules.molecule[].atom[] 

: distance(option="print|draw") : \begin 

pos1 = get('Structure.Position.mol[].atom[]', Location('self1').getIndex()) 

pos2 = get('Structure.Position.mol[].atom[]', Location('self2').getIndex()) 

ds = 0 

for i in [0,1,2] : ds = ds + math.pow(pos1[i]-pos2[i], 2) 

  if option == "print": 

    print 'Distance', $self1, $self2, ':', math.sqrt(ds) 

  else: 

    line(pos1,pos2, 0) 

    message = 'Distance:%f' % math.sqrt(ds) 

    pos = [(pos1[0]+pos2[0])/2,(pos1[1]+pos2[1])/2,(pos1[2]+pos2[2])/2] 

    text(pos, message, 0 ) 

\end 



71 

 

IMPORTANT: 

Action parser is replaced all matching words ("self[0-9]*" and parameter) in no conditions. Therefore you 

carefully used the words （"self[0-9]*"）in the actions. 

 

C.3   Example of Action file 
 

Example: from tutorial, 

 

# autorun 

# This action will be excuted when the UDF is opened or reloaded. 

autorun : initialize() : \begin 

import gnuplot 

# initialize GraphSheet 

trajsize = totalRecord() 

colname = ['time'] 

$GraphSheet[] = [] 

for i in range(getSheetColSize()): 

  deleteSheetCol(i) 

i=0 

for name in colname: 

  createSheetCol(i,name,trajsize) 

  i=i+1 

\end 

# Non Target Action 

# This action named 'clearDraw' will be executed when the user points UDF file icon in Editor, 

# or points background with [Ctrl] in Viewer. 

action : clearDraw() : \begin 

clearDraw() 

jump(0) 

\end 

# Typical Action definition 

# This Action named ’setColor’ will be executed when the user point ’Ball’ in Editor. 

# Action Dialog requires to select one of the value for the parameter ’BallColor’, 

# and the word 'BallColor' in the action body replaced to the selected color (say red). 



72 

action Ball: setColor(BallColor="white|blue|green|red") : \begin 

if BallColor == 'white': 

  $Ball.color[] = [1,1,1] 

elif BallColor == 'blue': 

  $Ball.color[] = [0,0,1] 

elif BallColor == 'green': 

  $Ball.color[] = [0,1,0] 

elif BallColor == 'red': 

  $Ball.color[] = [1,0,0] 

\end 

 

C.4   Connection with UDF file 
 

If action file names are written in the header part, Gourmet will load the action files. 

 

(Sample of action item description in UDF file) 
\begin{header} 
\begin{def} 
Action:string; 
Comment:string; 
\end{def} 
\begin{data} 
Action:"cognac_draw.act;cognac_info.act;cognac_plot.act;cognac_anal.act;cognac_edit.act" 
Comment:"UDF definition file for COGNAC4.2" 
\end{data} 
\end{header} 

 

Action search directory is the same directory of UDF file at first; the next is the directories specified by 

the environment variable UDF_ACTION_PATH. 

The default directories of UDF_ACTION_PATH are the followings: 

the directory specified by environment variable FP_FILES + "action", 

the directory specified by environment variable PF_ENGINE + "action". 

 



73 

Appendix D File converter 
 

D.1   What is File converter 
 

File converter is the tool to convert other format data file into UDF file. It needs the special filter rule file 

in the converting process. This section describes about the grammar of filter rule file. 

 

D.2   Grammar of Filter Rule 
 

COMMENTS 

If the first character of a line is '#', the whole line is a comment. 

PRE-OPERATION 

If the first word is ‘BEGIN’, specified python function will be executed before filtering operation. It is 

the same function as AWK. 

POST-OPERATION 

If the first word is ‘END’, specified python function will be executed after filtering operation. It is the 

same function as AWK. 

NUMBER 

If the first word is a number, specified number of lines will be skipped from the top. 

CONTROL RULE 

If the first word is 'CONTROL', the following variables are control data that specify how many lines of 

data are read. The numerical values described in the data file to be converted are read into the control 

variables. 

VARIABLE 

If the first word is the variable name that specified in the control rule, the same number of lines as the 

value of the variable is read from the data file. 

LABEL 

If the first word is 'LABEL', the line specifies a search condition and substitution conditions. The 

second word is the regular expression used by sed, perl, etc.  The third word and what follows are the 

variable names to be substituted. 

FIELD LENGTH 

The number enclosed by ( ) is a column number of data to read. When a umber is omitted or zero is 

specified, it reads as a free format divided by white space. 



74 

 

Table 7 shows BNF（Backus Naur Form）of filter rule statements. Boldface words are action keywords. 

UPPERCASE words are tokens. And “_NDATA” is the counter of reading data at the time. 

 

line: 

comment_line 

begin_proc 

skip_line 

control_line 

fixed_line 

maching_line 

end_proc 

\n 

comment_line: 

 # any statement \n 

begin_proc: 

 BEGIN python_func_name \n 

end_proc: 

 END python_func_name \n 

skip_line: NUMBER \n 

control_line: 

 CONTROL controls \n 

controls: 

 NOTHING 

 controls VARIABLE_NAME field_width 

field_width: 

NOTHING 

( ) 

( NUMBER ) 

fixed_line: 

 VARIABLE_NAME format_rules \n 

format_rules: 

NOTHING 

format_rules UDF_PATH field_width 

format_rules UDF_PATH = value 

format_rules UDF_PATH = python_func_name 



75 

matching_line: LABEL matching_pattern format_rules \n 

value: 

NUMBER 

"STRING" 

_NDATA 

Table 7: BNF expressions of filter rule statements 

 

D.3   Example of File Filter 
 

Molecule builder uses molfile filter and PDB file filter. These filters convert from source data file to the 

following UDF definition file. 

(Note) In the following samples, “(CONTINUE)” shows that a line continues the next line, so it is not a real 

data. 

 

\begin{def} 

class Vector3d:{x:float, y:float, z:float} 

class Atom:{ 

  Atom_ID:int 

  Atom_Type_Name:string 

  Position:Vector3d 

  Mol_ID:int 

} 

class Bond:{ 

  atom1:int 

  atom2:int 

} 

atoms[]:Atom 

bonds[]:Bond 

\end{def} 

 

Example 1: molfile filter 

Molfile filter converts from a molfile formatted data file to the above UDF definition file by the 

following rule file. 

 



76 

# example rule for convert molecule data from molfile 
3 
CONTROL nAtom(3) nConnect(3) 
nAtom atoms[].Position.x(0) atoms[].Position.y() atoms[].Position.z() (CONTINUE) 

atoms[].Atom_Type_Name() atoms[].Atom_ID=_NDATA atoms[].Mol_ID=-1 
nConnect bonds[].atom1(3) bonds[].atom2(3) 
LABEL ^M..CHG(6) 
LABEL ^M..ISO(6) 
END =END_PROC 
 

Example 2: PDB file filter 

PDB file filter converts from a PDB formatted data file to the above UDF definition file by the 

following rule file. 

 
# example rule for convert molecule data from pdb file 
LABEL ^ATOM..(6) atoms[].Atom_ID(5) (1) atoms[].Atom_Type_Name(4) (6) (4) (CONTINUE) 
(4) atoms[].Position.x(8) atoms[].Position.y(8) atoms[].Position.z(8) atoms[].Mol_ID=-1 
LABEL ^HETATM(6) atoms[].Atom_ID(5) (1) atoms[].Atom_Type_Name(4) (6) (4) (CONTINUE) 
(4) atoms[].Position.x(8) atoms[].Position.y(8) atoms[].Position.z(8) atoms[].Mol_ID=-1 
LABEL ^CONECT(6) =PDB_conect 
END =END_PROC 
 

Example 3: NASTRAN bulk file filter 

NASTRAN bulkfilefilter converts from a NASTRAN bulk file to the following UDF definition file by the 

following rule file. (only using GRID, CTRIA3, CTETRA labels) 

 
# example rule for convert mesh data from NASTRAN bulk file 
LABEL GRID(8) mesh.data.vertex[].id(8) (8) mesh.data.vertex[].position.x(8)  (Continues to the next line) 
mesh.data.vertex[].position.y(8) mesh.data.vertex[].position.z(8) 
LABEL CTRIA3(8) mesh.data.face[].id(8) mesh.partial_region[0].face[](8) (Continues to the next line) 
v0(8) v1(8) v2(8) mesh.data.face[].vertex[]=[v0,v1,v2] 
LABEL CTETRA(8) mesh.data.cell[].id(8) mesh.partial_region[0].cell[](8) (Continues to the next line) 
v0(8) v1(8) v2(8) v3(8) mesh.data.cell[].vertex[]=[v0,v1,v2,v3] 
 

 



77 

Appendix E Special converter tools 

 

E.1   NASTRAN Data Converter Tool 

 

NASTRAN data converter tool is a set of utilities, which loads a NASTRAN bulk data file to FEM UDF 

file, extract surface elements and draw FEM data. It loads NASTRAN bulk data file to FEM UDF file, and 

processes drawing and surface extraction.  

The FEM UDF definition file (fem_def.udf), the action files and the Python script files are located in the 

following directory: 

 

GOURMET_20XX/tool/NASTRAN 

 

How to use 
 

(1) Start-up 

 

Start GOURMET and load the FEM UDF definition file (fem_def.udf). Save as another file name without 

changing the UDF definition file. Be careful not to overwrite UDF definition file.  

 

(2) Reading and converting a NASTRAN bulk data file. 

 

Click the UDF file name in the editor view, so action list is displayed, and select [ReadBulk]. 

 

 

 

 

 

 

 

 

 

 

Figure 50: Three actions to read NASTRAN bulk file 



78 

 

 

 

 

 

 

Figure 51: Specifying a NASTRAN bulk file 

 

Click on the column under Values, and choose a NASTRAN bulk file that you want to read and click OK. 

When you load another file, the prior data is deleted.  

 

(3) Drawing an element 

 

To draw an element directly, click on “element[]” on Editor, and choose [DrawElement] from the action 

list .  

 

 

 

 

 

 

 

 

 

 

 

Figure 52: Choosing Actions for drawing an element 

 

(4) Extracting partial region 

 

Click on “group[]”, and choose [CreateRegion] from the action list.   

 

 

 



79 

 

 

 

 

 

 

 

 

 

 

Figure 53: Choosing an action to extracting partial region 

You have three alternatives “angle", "property", and  "angle_property", as a method of extracting partial 

region. "property" split region using element property only, while “angle_property” does using both angle 

of normal vector and element property. To split area by normal vector angle (“angle”), input angle value (°) 

and press OK.  

 

 

 

 

 

 

 

Figure 54: Specifying extraction condition for partial split 

 

If you expand "group[]" in Editor, you will find newly-created "group[0]", and partial region created 

under group[0].region[].  

Now click on “group[]” and choose [CreateRegion]. This action processes partial region extracting.  

"group[1]" is newly created, and extracted data is added in it. 

Click on "group[0]" with an index attached, and process extracting partial region. "group[0]" is revised 

for the latest extracted data.  

By partial region extraction for 2D element, a set of polygons is formed as a closed boundary edges.  

 

（５）Drawing partial region 

 



80 

Click on "group[0]" in Editor, and choose [DrawRegion] from the action list. All partial regions are 

drawn by polygons. All regions are drawn in minimum different colors. 

 

 

 

 

 

 

 

 

 

 

 

Figure 55: Drawing action for all partial regions 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 56: Drawing result for all partial regions (whole image) 

If you click on some "group[0].region[N]" in Editor, and choose [DrawRegion] from the action list. 

If you click on “region[N]”, such as “group[1].region[5]" and draw in Editor, only the selected region[N] is 

drawn in surface, and the rest is drawn in line.   

 

 

 

 



81 

 

 

 

 

 

 

 

 

 

 

Figure 57: Drawing result for a partial region (partial) 

 

（６）Conversion to NASTRAN bulk file.  

 

Click on UDF file name, and choose [WriteBulk] from the action list.  

 

 

 

 

 

 

Figure 58: Writing NASTRAN bulk file. 

 

In the above dialog, right-click on the input area below "Values" to open a file selection dialog. Next, go 

to the directory where you want to save the file, type file name, close file selection dialog, then click OK.  

 

Description of UDF 
 

Followings are the top-levele data structure and its description.  

 

coordinate[]:Coordinate Coordinate system data  

node[]:Node  Node dada 

element[]:Element  Element data 

property[]:Property  Element property data 



82 

material[]:Material  Property data 

group[]:RegionResult Extracting partially-splitted area.  

 

Followings are the low level data structure.  

 

Corrdinate system data structure 
class Coordinate:{ 
  id:ID 
  system:{ 
    type:select{"NodeCartesian","NodeCylindrical","NodeSpherical", 

"PointCartesian","PointCylindrical","PointSpherical"} 
    NodeCartesian:{  "rectangular coordinate system by 3-node_id" 
      node1_id:<Node,ID> 
      node2_id:<Node,ID> 
      node3_id:<Node,ID> 
    } "CORD1R" 
    NodeCylindrical:{  "cylindrical coordinate system by 3-node_id" 
      node1_id:<Node,ID> 
      node2_id:<Node,ID> 
      node3_id:<Node,ID> 
    } "CORD1C" 
    NodeSpherical:{  "spherical coordinate system by 3-node_id" 
      node1_id:<Node,ID> 
      node2_id:<Node,ID> 
      node3_id:<Node,ID> 
    } "CORD1S" 
    PointCartesian:{  "rectangular coordinate system by 3-positions" 
      coordinate_id:int 
      a:{ x1:double, x2:double, x3:double } 
      b:{ x1:double, x2:double, x3:double } 
      c:{ x1:double, x2:double, x3:double } 
    } "CORD2R" 
    PointCylindrical:{  "cylindrical coordinate system by 3-positions" 
      coordinate_id:int 
      a:{ x1:double, x2:double, x3:double } 
      b:{ x1:double, x2:double, x3:double } 
      c:{ x1:double, x2:double, x3:double } 
    } "CORD2C" 
    PointSpherical:{  "spherical coordinate system by 3-positions" 
      coordinate_id:int 
      a:{ x1:double, x2:double, x3:double } 
      b:{ x1:double, x2:double, x3:double } 
      c:{ x1:double, x2:double, x3:double } 
    } "CORD2S" 
  } 
} 

 

Followings are the definitions of coordinate system types.  

"NodeCartesian" : Defines a rectangular coordinate system using three grid points IDs in correspondence 

with CORD1R record in the NASTRAN file format. 

"NodeCylindrical" : Defines a cylindrical coordinate system using three grid points IDs in correspondence 

with CORD1C record in the NASTRAN file format. 

"NodeSpherical" : Defines a spherical coordinate system by reference to three grid points IDs in 

correspondence with CORD1S record in the NASTRAN file format. 



83 

"PointCartesian" : Defines a rectangular coordinate system using the coordinates of three points in 

correspondence with CORD2R record in the NASTRAN file format. 

"PointCylindrical" : Defines a cylindrical coordinate system using the coordinates of three points in 

correspondence with CORD2C record in the NASTRAN file format. 

"PointSpherical" : Defines a spherical coordinate system using the coordinates of three points in 

correspondence with CORD2S record in the NASTRAN file format. 

 

Node data structure 

class Node:{ 

  id:ID     "Node ID" 

  coordinate_id:int "<Coordinate,ID>"                  "Coordinate system ID" 

  position:{    "Node coordinates" 

    x1:double 

    x2:double 

    x3:double 

  } 

} 

 

 

 

 

 

Element data structure 

class Element:{ 

  type:select{"tri","quad","tetra","penta","hexa"} "Element type" 

  id:ID     "Element ID" 

  pid:<Property,ID>    "Property ID" 

  node[]:<Node,ID>    "Array of Node ID" 

} 

 

 

 

 

 

 

 



84 

【Explanation】 

Below is the sequence of nodes specification in accordance with NASTRAN. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 59: Sequence of nodes specification  

 

Property data structure 

class Property:{ 

  id:ID 

  mid:<Material,ID> 

  dimension:int "2:shell,3:solid" 

  values[]:string 

} 

 

 

Material data structure 

class MaterialProperty:{ 

  name:string 

  value:double 

} 

class Material:{ 

  id:ID 

  E:double "Young modulus" 

  G:double "Shear momulus" 

  NU:double "Poisson ratio" 



85 

  RHO:double "Mass devsity" 

  A:double "Thermal expation coefficient" 

  Other[]:MaterialProperty 

} 

 

Data structure of partially-extracted area processing  

class RegionSideElement:{ 

  element_id:<Element,ID>                "Original element ID" 

  side_id:int   "Side ID for an original element (See [Description] below.) 

} 

class RegionFace:{ 

  id:ID    "ID of an aspect or a side" 

  node_id[]:<Node,ID>  "Array of node ID" 

  element[]:RegionSideElement "Original element data" 

} 

class PartialRegion:{ 

  color_id:int   "Color IDs for the minimum number of  colors to color-code the 

partial area" 

  face_id[]:<RegionFace,ID>                  "Array of IDs for faces or edges forming partial region" 

} 

class RegionResult:{ 

  comment:string 

  face[]:RegionFace                   "Array of data for faces or edges" 

  region[]:PartialRegion  "Array of data for partial region" 

} 

 

[Description] 

color_id is a color index that finds the minimum number of colors to color-code the whole image.  

side_id is an index that specifies the side of an element.  For example, in a tetrahedral element, a triangle for 

side_id=0 is specified by node {1,2,3}.   

 

Triangle element  

side_id：[0]={1,2}, [1]={2,0}, [2]={1,2} 

 

Quadrangular element 

side_id：[0]={0,1}, [1]={1,2}, [2]={2,3}, [3]={3,0} 



86 

 

Tetrahedral element 

side_id：[0]={1,2,3}, [1]={0,3,2}, [2]={0,1,3}, [3]={0,2,1} 

 

Pentahedron element  

side_id：[0]={0,2,1}, [1]={3,4,5}, [2]={0,1,4,3}, [3]={1,2,5,4}, [4]={0,3,5,2} 

 

Hexahedron element 

[0]={ 0,4,7,3 }, [1]={ 1,2,6,5 }, [2]={ 0,1,5,4 },  

[3]={ 2,3,7,6 }, [4]={ 0,3,2,1 }, [5]={ 4,5,6,7 } 

 

 



87 

Appendix F  
 

3D Displacement of Drawing Targets 
(Translation/Rotation)  

 

For a specific drawing target (Ver.4.0 covers point, line, ball and cylinder) in 3D drawing screen, now you 

have new functions of changing direct drawing coordinates. Below is the explanation. 

 

F.1   Getting Ready 
 

To execute 3D translation or rotation, you need to have two kinds of actions and drawing targets related 

UDF data.  

 

The two actions are:  

（１）Select action ( $Select_$Translate(), $Select_$Rotate() ) 

Action script for selecting drawing targets.  

（２）Return action ( $Translate(), $Rotate() )  

Return the destination coordinates to UDF data. 

 

These two action examples are in GOURMET_20XX/action/cognac/cognac_transform.act . 

The following 3D translation or rotation is possible if you insert this action script to COGNAC engine 

drawing action file.  

 

F.2   Operating Procedure 
 

Before operating, copy the 3D translation and rotation sample action (cognac_transform.act) at the end of 

the drawing action file (cognac_draw.act) of COGNAC engine. 

 

Translation 
 

Below is the translation operation procedure using COGNAC engine UDF. 



88 

(1) Open a UDF file of COGNAC engine, choose "show" action, and draw by "ball-stick".  

(2) Choose an atom within a target molecule.  

(3) Choose “$Translate_MOL” from Action selection menu. (Figure 60） 

(4) Once the above Select Action is executed, a target molecule is selected, and parallel translation  

operation dialog is displayed. (Figure 61)   

(5) parallel translation operation dialog has two screens. One is "Direction" tab screen, whose  

"Up"/"Down"/"Left"/"Right" button translates the current view in parallel toward the selected 

destination for the specified “Length". The other is “Vector" tab screen, where you input translation 

vector amount.  

While parallel translation operation dialog is open, drag the drawing screen and the target moves in the 

same direction as a mouse moves.   

1 pixel of mouse movement distance on drawing screen is the tenth of the movement distance by button  

operation. 

(6) In "Direction" tab screen, the target moves in parallel as specified by each direction button. In "Vector" 

tab screen, it moves in parallel for the vector amount you input. 

(7) Click OK, and parallel translation operation is settled in the latest drawing status. Return Action is 

executed and destination coordinate is returned to UDF data.  

 

General eye sight rotation, movement and zoom are operable during transfer operation. 

 

Rotation 
 

Below is the rotating operation procedure using COGNAC engine UDF file. 

(1) Open a UDF file of COGNAC engine, and draw by "ball-stick". 

(2) Choose multi-picking mode from Picking menu on the draw view. 

(3) Choose two atoms as an axis of rotation. 

(4) Choose “$Rotate” from the action menu when you choose the second atom. (Figure 62) 

(5) The above “Select Action” is executed, an atom and bond on the second atom side is selected, and 

rotation operation dialog is displayed.  (Figure 63)  

(6) In rotating operation dialog, rotation central coordinate and rotation axis vector are indicated. Rotation 

central coordinate is the first atom axis, and rotation axis vector points at the second atom from the first 

atom.  (Figure 64)  

(7) You can edit rotation central coordinate, rotation axis vector, and rotation degrees of angle.  

(8) Input rotation degree, press arrow button, and an object is drawn based on the post rotation. 

(9) Press OK, and rotating operation is settled as the last drawing status, and the above “Return Action” is 

executed.  



89 

 

Press Cancel on rotating operation dialog, and the axis returns to the initial status.  

 

 

 

 

 

 

 

 

 

 

Figure 60: Choosing Parallel Translation Action 

 

 

 

 

 

 

 

 

Figure 61: Parallel Translation operation Dialog 

 

 

 

 

 

 

 

 

 

 

 

Figure 62: Choosing Rotation Action 



90 

 

 

 

 

 

 

 

 

 

 

 

Figure 63: Rotation Operation Dialog 

 

 

2 : 1 => 2 : AXIS 

1 : ORIGIN 

  

 

 

 

 

Figure 64: Rotation Center and Rotation Axis Vector 

 

 



91 

Appendix G   
 

Environment Variables Production Tool 
 

Environment variable production tool (gourmet_init) is an executable module coded by C/C++.  The tool 

is located at %PF_FILES%/bin/%ARCH% directory, and use the environment initial file 

(platform_win32.ini in Windows and platform_linux.ini in Linux) as user input data. 

The tool returns the following directory paths depending on the optional arguments. 

 

Optional arguments of environment variables are as follows.  

 

arch :  Return machine architecture name 

(Returned win32 or lower-case character of "uname -s" command, or what 

you specified by -a.) 

python.home : Return Python home directory.  

python.path : Return Python paths.  

action.path : Return action paths.  

udf.path :   Return UDF paths.  

java.home :  Return a Java home directory.  

java.java :  Return a Java execution module path.  

user.path :  Return execution paths.  

library.path :  Return library paths.  

-a :   Specify your machine architecture name. 

-f :   Specify your initial environment file name. (ex. "platform_win32.ini")  

-j :   Specify your Java home directory, or search paths for Java home directory. 

For example, if you give C:\OCTA20XX\GOURMET_20XX\bin\win32\jre1.5 to the tool, 

you will receive a real path 

C:\OCTA20XX\GOURMET_20XX\bin\win32\jre1.5.0_12 . 

-u :   Give a file path, the tool returns the parent directory path. 

No optional argument : All the returned values other than the above –options are listed.  

 

Below is an example of executing environment variable tool without argument.  

gourmet_init -f platform_win32.ini 

arch=win32 



92 

python.home=C:\OCTA20XX\GOURMET_20XX\bin\win32\Python 

python.path=C:\OCTA20XX\GOURMET_20XX\python;C:\OCTA20XX\GOURMET_20XX\lib\win32

;C:\OCTA20XX\PF_ENGINE_20XX\python;C:\OCTA20XX\PF_ENGINE_20XX\lib\win32 

action.path=C:\OCTA20XX\GOURMET_20XX\action;C:\OCTA20XX\PF_ENGINE_20XX\actionudf.

path=C:\OCTA20XX\PF_ENGINE_20XX\udf 

java.home=C:\OCTA20XX\GOURMET_20XX\bin\win32\jre1.5.0_08 

java.java=C:\OCTA20XX\GOURMET_20XX\bin\win32\jre1.5.0_08\bin\java.exe 

user.path=C:\OCTA20XX\GOURMET_20XX\bin\win32;C:\OCTA20XX\PF_ENGINE_20XX\bin\win

32 

library.path=C:\OCTA20XX\GOURMET_20XX\lib\win32;C:\OCTA20XX\PF_ENGINE_20XX\lib\wi

n32 

 

Environment variable production tool returns real paths only. It can also replace the following key words 

in the environment initial file. 

 

%ARCH%,${ARCH} :  Architecture name 

(Returned win32 in Windows or lower-case character name of “uname –s” command in 

Unix/Linux, or what you specified by -a option.) 

%PF_FILES%,${PF_FILES} : PF_FILES environment variable (GOURMET installation directory path) 

%PF_ENGINE%,${PF_ENGINE} : PF_ENGINE environment variable (installation directory path of 

OCTA engines). 

%OCTA_HOME%,${OCTA_HOME}: OCTA_XXXX_HOME environment variable (OCTA installation 

directory path)  

 

 

 

 



93 

Appendix H   Trouble Shooting 
 

H.1   Python Tool 
 

I can't start Python Shell from Tool/Python menu. 

- Check “Python Application:” and “Python argument:” text fields in the Application Setup Dialog, 

which is displayed from “Tool/Application Setup…” menu. You need to set the input field of “Python 

Application:” to the Python module path (pythonw.exe for Windows) and the input field of “Python 

argument:” to Python IDLE (Tools\idle\idle.pyw for Windows). 

 

H.2   Drawing 3D Objects 
 

I can’t draw 3D objects. 

- Make sure that JOGL JSR-231 v. 1.0.0 or later is installed on your PC.  

- If your PC is a very new model, update the newest display driver. 

 

In Linux x86_64, GOURMET can start but cannot draw 3D objects. 

- Check 32bit GL library in your x86_64 Linux. If there is not /usr/lib/libGL.so.1, you need to install 

32bit GL and GLU library in your Linux. 

 

H.3   Plotting Graphs 
 

I can't start gnuplot from Tool/Gnuplot menu. 

 - Check “Gnuplot Application:” text fields in the Application Setup Dialog, which is displayed from 

“Tool/Application Setup…” menu. You need to set the input field of “Gnuplot Application:” to the 

gnuplot module path (wgnuplot.exe for Windows). 

 

H.4   Editing Values 
 

I can’t copy and paste between GOURMET and another application, in Linux.  

This is solved after Java 1.4. 



94 

 

I can’t select two or more cells in Table editing view after GOURMET v 4.0. 

- The method of selecting multiple cells has been changed by Java upgrade. If you select two or more 

cells, after selecting the first cell, and select the second cells by pressing [shift] key. This way, you can 

select all cells within the rectangular region between the first selected cell and the second 

 


	What is GOURMET
	Getting started
	2.1   Start GOURMET
	2.2   Edit UDF
	2.3   Run Python
	2.4   Run Engine
	2.5   View Result
	2.6   Tools

	Startup Options
	3.1   System Outline
	3.2   Environment Variables
	3.2.1   Needed Environment Variable
	3.2.2   Optional Environment Variable

	3.3   Startup Shell
	3.3.1   Startup Options
	3.3.2   Microsoft Windows
	3.3.3   Linux

	3.4   Engine Manager
	3.4.1   Startup Options
	3.4.2   Microsoft Windows
	3.4.3   Linux

	3.5   Data Manager
	3.5.1   Microsoft Windows
	3.5.2   Linux

	3.6   Stopping GOURMET

	Editing UDF
	4.1   Edit Mode
	4.1.1   Edit Mode

	4.2   Choosing View Format
	4.2.1   Tree View
	4.2.2   Table View

	4.3   Choosing Data Location
	4.3.1   Global Location
	4.3.2   Record Location

	4.4   File Menu
	4.4.1   Editing UDF Header
	4.4.2   File Converter
	4.4.3   Using Text-Formatted UDF and Binary-Formatted UDF

	4.5   Edit Menu
	4.5.1   Copy/Paste Mode

	4.6   View Menu
	4.6.1   Editor Preferences Dialog

	4.7   Unit Conversion
	4.8   Tips for Using Editor

	Using Unit System
	5.1   Unit Menu
	5.2   Choosing Unit System
	5.3   Importing Unit System
	5.4   Displaying Engine Unit System

	Scripting with Python
	6.1   Tools in Python Panel and Python Menu
	6.2   Python Scripting in Editor
	6.3   Python Scripting in Viewer
	6.4   Action in Editor
	6.5   Picking in Viewer
	6.6   Tips for Using Python Panel

	Running Engine
	7.1   Engine Manager
	7.2   Engine Run Panel
	7.3   Engine Control Panel
	7.4   Tips for Using Engine Control

	Viewing 3D Object
	8.1   Viewer Startup Screen
	8.2   3D Object Window
	8.2.1   Picking 3D Object Operation

	8.3   Python Window in Viewer
	8.3.1   3D Object Animation

	8.4   Menu of Viewer
	8.4.1   File Menu
	8.4.2   View menu
	8.4.3   Display Menu
	8.4.4   Picking menu
	8.4.5   Python Menu
	8.4.6   Options Menu


	Making Plot
	9.1   Plot Tool
	9.2   Graph Sheet Object
	9.2.1   Python Function for GraphSheet

	9.3   Plot Scripting
	9.3.1   Using Plot Script Library


	Using Tools
	10.1   File Transmitter Tool
	10.2   Python Tool
	10.3   Gnuplot Tool
	10.4   Application Setup Tool
	10.5   Molecular Builder Tool
	10.6   Start-Up Environment Parameter Tool

	Appendix A Operation environment
	A.1   Operating System
	A.2   Java System
	A.3   Graphics System
	A.4   Python System

	Appendix B Security policy of Engine Manager
	Appendix C Action definition
	C.1   Grammar of Action file
	C.2   Special words in python statement
	C.3   Example of Action file
	C.4   Connection with UDF file

	Appendix D File converter
	D.1   What is File converter
	D.2   Grammar of Filter Rule
	D.3   Example of File Filter

	Appendix E Special converter tools
	E.1   NASTRAN Data Converter Tool
	How to use
	Description of UDF


	3D Displacement of Drawing Targets (Translation/Rotation)
	F.1   Getting Ready
	F.2   Operating Procedure
	Translation
	Rotation


	Environment Variables Production Tool
	Appendix H   Trouble Shooting
	H.1   Python Tool
	H.2   Drawing 3D Objects
	H.3   Plotting Graphs
	H.4   Editing Values


