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Direct numerical simulations were performed using a smooth profile method to investigate the steady-state
sedimentation of monodisperse spherical particles in an incompressible fluid at finite Peclet numbers 0 � Pe � 115.
Hydrodynamic interactions caused strong fluctuations in the instantaneous velocity of the particles around the mean
settling velocity. We found that the amplitude of these velocity fluctuations increases in direct proportion with the
square of the Stokes velocity at higher Peclet numbers, where sedimentation is dominated by non-equilibrium
hydrodynamic fluctuations. The diffusive behaviour of the particles was observed to be in a steady state over long time
scales, and the steady-state self-diffusion coefficient was found to increase linearly with the Peclet number. Our results
provide new insights into the anisotropy of vertical and horizontal diffusion. This anisotropy increases with an
increasing Peclet number, plateauing at a high Peclet number.
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1. Introduction

The sedimentation of monodisperse colloidal particles
is relevant to modern chemical and petroleum industries.
Although many experimental,1–6) theoretical,7–9) and numer-
ical10–24) investigations have been performed to provide a
basic understanding of sedimentation, knowledge of the
long-range interactions between particles remains incom-
plete. These inter-particle interactions, caused by fluid flow,
are referred to as hydrodynamic interactions (HIs). The first
significant progress in sedimentation research was made by
Stokes,25) who calculated the sedimentation velocity of a
single sphere as, V�¼0

s ¼ ð2=9Þga2ð�p � �fÞ=�, where a is
the particle radius, �p is the particle density, �f is the fluid
density, g is the gravitational acceleration, and � is the fluid
viscosity. The effect of the volume fraction on the mean
settling velocity, in the form Vs ¼ V�¼0

s ð1� k�Þ, was later
established by Batchelor26) for the dilute limit � � 1, where
� is the particle volume fraction. This decrease in velocity is
attributed to the fluid back flow. The value of k was found to
be 6.55 for a uniform particle distribution, which is suitable
for most of the experimental configurations.27) Each particle
produces a velocity field during sedimentation under a
creeping flow condition that affects the motion of the
other particles. This velocity field causes a change in the
microstructure or position of the particles during sedimenta-
tion, thereby resulting in long-range HIs between the
particles. These long-range HIs cause fluctuations in the
instantaneous particle velocity around the mean settling
velocity and largely depend upon the system size, volume
fraction and polydispersity.

Theoretical results7–9) and early simulations13) suggest that
velocity fluctuations converge to a finite value depending on
the size of the container, whereas experiments1,2) show no
such dependency. Furthermore, fluctuation magnitudes are
strongly anisotropic with vertical velocities being greater
than horizontal velocities. These velocity fluctuations are
found to be strongly dependent on volume fraction and aspect
ratio (i.e., the ratio of the vertical to horizontal lengths) in
simulations,4,11,12) whereas experiments1) didn’t observe such
dependency. This contradiction between experiment and
simulation results was solved by Segre et al.4) by introducing

the concept of a characteristic swirl size or correlation length;
i.e., velocity fluctuations are explained as a function of
cell size, only when the cell size is less than the swirl size.
These results were later confirmed by Ladd14) using lattice
Boltzmann simulations. Although the quantitative and
qualitative behaviour of these velocity fluctuations is well
understood, the screening mechanism for the velocity
fluctuations remains unclear (i.e., the manner in which
correlations in the fluctuations decay in time and space).
Shaqfeh and Koch8) proposed a Debye-like screening,
whereas Ramaswamy28) proposed a stochastic convection-
diffusion model; however, these ideas were not confirmed
by the computer simulations of Ladd et al.10–14) Hinch9)

suggested another mechanism, in which the bottom wall
acts as a sink for fluctuations, that was confirmed using
simulations.13,14) Some authors6,14) posit that stratification
and polydispersity also play key roles in screening. Addi-
tional details can be found in a review paper by Guazzelli.29)

Self-diffusion is one of the most important parameters of
sedimentation due to its role in mixing and other chemical
processes. Although the discovery and recognition of the
anomalous behaviour of particle diffusion in sedimentation
is relatively new, the subject has already captured the
attention of a growing number of researchers in diverse
fields, including the study of suspension mechanics,
fluidization, materials processing and granular flows. This
diffusion is referred to as hydrodynamic diffusion because
its origin lies in the HIs between the particles.

Similar to velocity fluctuations, diffusion is also strongly
anisotropic, and the vertical diffusion is greater than the
horizontal diffusion. This anisotropic behaviour arises from
the anisotropic nature of the velocity fluctuations and their
relaxation times.30) Early simulations10) on self-diffusion
observed a large value for the anisotropy of vertical and
horizontal diffusion. This large anisotropy was later
corrected by increasing the volume fraction and aspect
ratio of the periodic box.11,20) Despite the importance of
hydrodynamic diffusion in chemical industrial research,
only a limited number of simulations10,11,19,20) have been
performed to address its behaviour.

The non-equilibrium properties of colloidal particles are
difficult to simulate because they involve long-range, many-
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body HIs that require enormous temporal and spatial scales. A
number of different methods10,19,20) are available to simulate
non-equilibrium colloidal phenomena; excellent reviews of
these methods are presented by Padding et al.18) and Ladd
et al.15) We performed a direct numerical simulation (DNS)
using the smooth profile (SP) method, which replaces the
original sharp boundaries between the particle and the host
fluid with a diffuse interface of finite thickness. This approach
enables us to use a fixed Cartesian grid, thereby significantly
improving the speed of numerical computations. The main
features of our method are explained in Sect. 2.

In contrast to the majority of previous studies,3,5,13,20)

which were performed in a non-Brownian regime
(Pe ! 1), we focused our work in the finite Peclet number
(Pe) regime ranging from 0 to 115, which is a significantly
higher range than that studied by Padding et al.18,19)

(Pe � 12). Sedimentation at finite Pe regime describes the
relative effects of thermal fluctuations (caused by collisions
between colloids and solvent particles) and hydrodynamic
fluctuations (caused by hydrodynamic flows of solvent). In
the present study, we investigated the imprints of these
relative effects on the anisotropic behaviour of velocity
fluctuations and diffusion. Padding et al.17–19) were the first
to study sedimentation in the finite Pe using coarse-grained
stochastic rotational dynamics (SRD) simulations. In SRD,
the highest achievable Pe is limited by the constraints on the
Mach and Reynolds numbers (Re), whereas in the SP
method, the highest Pe is limited only by Re. Consequently,
a wide range of Pe is achievable, using our method. The
present work validates the work of Padding17–19) and extends
it to Pe � 115. This paper also provides new insights into
the anisotropic behaviour of diffusion at finite Pe. Section 2
explains the simulation method, and Sect. 3 describes
selection of the working parameters. The results are
provided in Sect. 4, and we present conclusions based on
our work in Sect. 5.

2. Simulation Method

In this section, we briefly explain the salient features of
our method. The detailed formulas, algorithm and ap-
plicability of the SP method can be found in previous
publications.31–38) In the SP method, the colloid surface is
not treated as a sharp interface lacking thickness; rather,
an intermediate region is introduced at the surface. This
intermediate region or interface has a width comparable to
the grid spacing, and the colloid’s density profile is defined
such that it changes smoothly within that interface.
Quantities such as the velocity and pressure are defined
over the entire computational domain, which includes the
colloid as well as the solvent. A smooth profile function
0 � �ðx; tÞ � 1 is used to distinguish between the fluid and
particle domains. Here, � ¼ 0 stands for fluid domain, and
� ¼ 1 indicates the particle domain.

For an arbitrary particle i, the motion of the colloidal
particles is obtained by solving Newton’s equations of
motion:

Mi
_Vi ¼ FH

i þ Fc
i þ Fext

i þ GV
i ;

_Ri ¼ Vi; ð1Þ
Ii � _�i ¼ NH

i þ Next
i þ G�

i ; ð2Þ
where Ri is the position of the particle, Vi and �i are the
translational and rotational velocity of the particle, respec-

tively. Mi and Ii are the mass and moment of inertia,
respectively. NH

i and FH
i are the hydrodynamic torque and

force, respectively, exerted by the solvent on the particle.
Fext
i and Next

i are the external force and torque, respectively.
GV

i and G�
i are the random force and torque due to thermal

fluctuations, which can be described as, hGn
i ðtÞGn

j ð0Þi ¼
�nI�ðtÞ�ij, where hGn

i ðtÞi ¼ 0 and �n (n 2 V;�) is the
parameter that controls the temperature of the system T .
The actual value of the particle temperature is determined by
using the long-time diffusion coefficient of the equilibrium
system. When simulating a Brownian particle with HIs, the
diffusion coefficient is affected by finite size effects (i.e.,
the artefacts arises when system size is smaller than the
correlation length). These effects can be accounted for via
D�¼0

0 ¼ D0Kð�Þ, where D�¼0
0 is the thermal diffusion

coefficient of a Brownian particle at infinite dilution, D0

is the thermal diffusion coefficient of Brownian particles
obtained for � 6¼ 0 and Kð�Þ is the coefficient that represents
the effects of the finite volume fraction of dispersed particles
under periodic boundary conditions.39) Finally, the tempera-
ture of the system can be determined using the Stokes–
Einstein equation, kBT ¼ 6��aD�¼0

0 , where kB denotes
the Boltzmann constant. The detailed implementation of
Brownian motion with some test cases is presented by
Iwashita et al.33–35)

The direct inter-particle interaction Fc
i is presented as a

truncated Lennard-Jones (LJ) potential with the large powers
of 24 : 12, which can be defined as:

ULJðrijÞ ¼
4�

	

rij

� �24

� 	

rij

� �12
" #

þ � ðrij � 21=12	Þ;

0 ðrij > 21=12	Þ;

8><
>: ð3Þ

where rij ¼ jRi � R jj. The parameters 	 and � denote the
length and energy units of the LJ potential, respectively,
where 	 ¼ 2a represents the particle diameter.

In the SP method, the solvent motion is obtained by
solving the modified Navier–Stokes equation for the total
velocity field v and pressure field p under the condition of
incompressibility (r � v ¼ 0) as follows:

�fð@tvþ v �rvÞ ¼ �rpþ �r2vþ �f�f p: ð4Þ
The rigidity of the particle and fluid/particle non-slip

boundary conditions are incorporated via the body force
�f p.

31,32)

A similar smooth profile40) was adopted in the previously
proposed fluid particle dynamics (FPD) method, where
particles are modelled as a highly viscous fluid. In contrast,
we treated particles as non-deformable solids such that
no additional constraint arises. Moreover, Luo et al.41) has
performed error estimation and comparison of SP method
with force coupling method (FCM)42) and a well-resolved
DNS43) for several problems. They found that the SP method
is resolving the near-field flows as well as the far-field flows
accurately. Furthermore, they established after the rigorous
analysis that compared to FCM and DNS, SP method is
computationally faster and advantageous for simulating
moving particles because it avoids the complex discretiza-
tions around the particles.

The Peclet number, which is the ratio of convection to
diffusion, can be defined as
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Pe ¼ aV�¼0
s

D0

: ð5Þ

One can expect HIs to play a dominant role at higher Pe,
thereby leading to changes in the microstructure.

3. Simulation Parameters

A number of simulations were performed under periodic
boundary conditions with Pe ranging from 0 to 115 at
volume fraction � ¼ 0:02. A cubic periodic box of
dimension L ¼ 128� and spherical particles of size 4�

were used in all of the simulations. This particular particle
size has already been used by Nakayama et al.38) for
different test cases and it accurately produced the near and
far-field flows, pressure distribution, drag force and lubrica-
tion interactions. We defined � as the lattice spacing, which
is also taken as the unit of length. For given values of � and
�f , the remaining units of mass, time, pressure and energy
are respectively defined as �f�

3, �f�
2=�, �2=�f�

2, and
�2�=�f . The thermal fluctuations kBT were kept constant at
�0:3, and the � of the LJ potential was set at 2.5. Gravity
was introduced in the z-direction, and Pe was increased by
increasing the gravity. We constrained the center of mass of
fluid to avoid indefinite accelerating of the system. The
parameters in the Navier–Stokes equation were set such that
particle Reynolds number, Re ¼ �faV

�¼0
s =�, remained less

than 0.2 (i.e., creeping flow, Stokes regime). When
increasing gravity, it is important that the Re remain within
this creeping flow condition. The majority of the experi-
mental studies1,2,4,29) have been performed at very low Re,
usually of the order of 10�5 or less. Because a relative
deviation from the Stokes regime will scale with the square
of Re, we can probe relatively high Re values without
straying from the relevant experimental conditions. We kept
the particle to fluid density ratio 5 to have a large range of
Pe, keeping Re � 0:2. Particles require a certain period of
time after the simulation begins to acquire their steady-state
velocities for a given initial configuration. We monitored
the data, and only that corresponding to the steady-state
velocities was used. Simulations were performed for a
sufficiently long period to yield statistically meaningful data
for this analysis.

The HIs are increased with the increase of Pe. The
additional hindrance caused by these HIs changes the
microstructure of the system. A quantitative measure of
the microstructure at the particle scale is provided by the
radial distribution function (RDF)

gðrÞ ¼ 2L3

N2

X
i<j

�ðr� rijÞ
* +

; ð6Þ

where N is the total number of particles, r ¼ jrj, rij ¼
Ri � R j, h� � �i denotes an ensemble average, and the
summation

P
i<j is taken over all particle pairs. This

definition of gðrÞ implies that 4��gðrÞr2�r represents the
mean number of particles in a shell of radius r and thickness
�r surrounding a particle, set at the origin.44) Figure 1
shows the gðrÞ for different Pe. The peak of the function
increases with increasing Pe, demonstrating the formation of
aggregates or clusters. This clustering was expected as
random motion progressively disappears with increasing Pe

which in turn induces the cluster formation. The similar

phenomena has also been observed by Brady et al.,16) while
investigating the relative effect of thermal and shear force.
They reduced the effect of thermal fluctuations by increasing
the shear rate and observed the similar cluster formation.
Figure 1 also shows that the results are not distinguishable
from the equilibrium results (Pe ¼ 0) for Pe ¼ 6, showing
the strong effect of thermal fluctuations, whereas for Pe > 6,
these results are differentiable, evincing a progressively
dominating effect of HIs. A large change in the RDF
between Pe � 29 and Pe � 57 indicates that HIs overpower
the phenomena.

4. Results and Discussion

4.1 Spatial correlations of velocity fluctuations
To study the effect of Pe on the flow pattern, we define

the following spatial correlation functions for the velocity
fluctuations:

CzðrÞ ¼ 2L3

N2

X
i<j

�Viz�Vjz�ðr� rijÞ
* +

; ð7Þ

where �Viz ¼ Viz � Vsed, Viz is the temporal velocity of the
ith particle in the z-direction, and Vsed ¼ hVizi is the mean
settling velocity of the particles. We define CzðzÞ and CzðxÞ,
with respect to the distance vector r, in either the vertical
r ¼ z�z or horizontal r ¼ x�x direction.

Figure 2 shows the decay of the spatial correlation
functions of the z-component of velocity as a function of
the vertical (z) and horizontal (x) distances, where the
distance is normalized by the particle radius a. In the main
plots of Figs. 2(a) and 2(b), the correlation functions are
normalized by the initial value of the fluctuations, whereas
the correlation functions in the figure insets are normalized
by the square of the Stokes velocity. Figure 2(b) shows a
persistent positive correlation in the direction of gravity,
whereas Fig. 2(a) shows a rapid decay of all correlations in
the direction perpendicular to gravity followed by a distinct
region of anti-correlation similar to that observed in
experiments4) and simulations.19) Notably, for a sufficiently
large system, the horizontal correlations should decay
exponentially and become negative before settling to zero.
The minima of these anti-correlations is known as the
correlation length4) 
 � 20a��1=3, i.e., 
 is twenty-fold

 0

 0.5

 1

 1.5

 2

 2.5

 1  2  3  4  5

g(
r)

r/a

Pe=0
Pe=6

Pe=29
Pe=57

Pe=115

Fig. 1. (Color online) Radial distribution function gðrÞ for different Pe.

Simulations are performed in a cubic periodic box of length L ¼ 128

with a particle size of a ¼ 4, keeping � and kBT constant respectively at

�0:02 and 0.3.
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greater than the inter-particle distance. Although anti-
correlations are also clearly visible in our results, a larger
system size is needed to verify the correlation length
obtained experimentally. This determination is, however,
beyond the scope of the present study.

The particle motion is affected by the finite system size in
our simulations. A large system size is needed to reproduce
the saturation of the velocity fluctuations, but it requires
enormous computational time and resource. Therefore, most
of the computational studies10,11,14,19,20) are in the same
situation as ours. The systematic experimental2,4) and
simulation11,13) studies, however, addressed that the effects
of finite system size on velocity fluctuations can be
effectively explained using a concept of finite size scaling.19)

We believe that performing critical tests for the scaling
concept possesses an important value.

4.2 Temporal correlations of velocity fluctuations
To differentiate between the effects of the hydrodynamic

and thermal fluctuations, we define the temporal autocorre-
lation functions of the velocity fluctuations as follows:

CxðtÞ ¼ hVixðtÞVixð0Þi; ð8Þ
CzðtÞ ¼ h�VizðtÞ�Vizð0Þi: ð9Þ

Figure 3 shows the time decay of the correlation functions
for the z and x components of the velocity fluctuations. Two
different normalizations were used: the main plots of Fig. 3

show the temporal correlation functions normalized by the
initial values Czð0Þ and Cxð0Þ, whereas the figure insets
show the temporal correlation functions normalized by the
square of the Stokes velocity in a semi-log plot. Time was
normalized by the Stokes time ts, where ts ¼ a=V�¼0

s .
The main plots of Figs. 3(a) and 3(b) show that the

relaxation time is different for the vertical and horizontal
correlations, whereas the experiments of Nicolai1) did not
show a large difference at these time scales. The theory
proposed by Koch30) suggests that this difference in time
scales come from the vertical periodic boundary conditions.
Therefore, the time required by a particle to sample all the
vertical position is much smaller than that required to sample
horizontal positions. This difference in time scales can be
reduced by increasing the system size. The computer
simulations of Ladd10) and padding19) also observed the
same phenomena while using vertical periodic boundary
conditions. In contrast to simulations, experiments1,4) use
much larger system which reduce the difference in vertical
and horizontal relaxation time. At low Pe, the strong effects
of thermal fluctuations cause a rapid decay of correlation
functions, whereas at higher Pe, exponential decay is
evident, as shown in Fig. 3.
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Fig. 2. Spatial correlation function of velocity fluctuations of the

z-component of the velocity as a function of the distance: (a) shows the

spatial correlation function perpendicular to gravity and (b) shows the

spatial correlation function parallel to gravity. In the main plots, the

correlation functions are normalized by the initial position fluctuations,

whereas the correlation functions in the insets are normalized by the square

of the Stokes velocity. The distance is normalized by the particle radius a.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50

C
x(

t)
/C

x(
0)

t/ts

Pe=6
Pe=11
Pe=29
Pe=57

Pe=115

10-3

10-2

10-1

 0  5  10  15

C
x(

t)
/(

V
sφ=

0 )2

(a)

Eq. (13)
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Fig. 3. Temporal autocorrelation functions of the velocity fluctuations

of the vertical ½CzðtÞ	 and horizontal ½CxðtÞ	 components of the velocity.

The main plots show the correlation functions normalized by the initial

fluctuations, whereas the temporal correlation functions shown in the insets

are normalized by the square of the Stokes velocity on a semi-log scale.

Insets also show that at large Pe, these correlation functions relax

exponentially of the form C�ðtÞ ¼ ð�V�
HÞ2 expð�t=��HÞ, where �V�

H

(� 2 x; z) and ��H denote the amplitude and the relaxation time of the

hydrodynamic velocity fluctuations, respectively. Time is normalized by the

Stokes time ts, where ts ¼ a=V�¼0
s .
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In an experimental study, Nicolai et al.1) observed an
exponential relaxation of the form

C�ðtÞ ¼ ð�V�
HÞ2 exp � t

��H

 !
; ð10Þ

where �V�
H (� 2 x; z) and ��H denote the amplitude and the

relaxation time of the hydrodynamic velocity fluctuations,
respectively. Hinch9) predicted the scaling relations

�V�
H=V

�¼0
s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A�

1L�=a
p

; ð11Þ
��H=ts ¼ A�

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L=ð�aÞ

p
; ð12Þ

where A�
1 and A�

2 are constants that depend on the specific
configuration of the system (e.g., the container shape, swirl
size, particle shape, and polydispersity). Cunha et al.20)

explained the scaling relations predicted by Hinch9) by
hypothetically dividing the simulation box into two equal
parts. The imbalance in the particle weight caused by
variations in the particle number in both parts is balanced
by the Stokes drag. Velocity fluctuations consist of thermal
and hydrodynamic component. At high Pe, hydrodynamic
fluctuations dominate the phenomena, whereas thermal
fluctuations play a key role at low Pe. This dominant role
of hydrodynamic fluctuations at higher Pe causes the
correlation functions to fall on the same curve when scaled
with the square of the Stokes velocity, as shown in the insets
of Fig. 3, which is in good agreement with the simula-
tions.19,20) This normalization highlights the effect of the
non-equilibrium hydrodynamic fluctuations.

The present DNS results support the following forms for
the velocity autocorrelations:

CxðtÞ ¼ C0ðtÞ þ ð�Vx
HÞ2 exp � t

�xH

� �
; ð13Þ

CzðtÞ ¼ C0ðtÞ þ ð�Vz
HÞ2 exp � t

�zH

� �
; ð14Þ

where C0ðtÞ represents the velocity autocorrelation function
in the presence of thermal fluctuations but without gravity,
which quantitatively becomes negligible at higher Pe. We
continue our analysis by assuming the scaling arguments20)

as explained in Eqs. (11) and (12). The perfectors A�
1 and

A�
2 are determined based on exponential fits both on vertical

and horizontal correlation functions as Az
1 � 0:156, Az

2 �
1:08, Ax

1 � 0:028, and Ax
2 � 0:22. The difference in vertical

and horizontal prefactors indicates the anisotropic behaviour
of velocity fluctuation with the vertical fluctuations larger
than the horizontal. This anisotropy of velocity fluctuations
varies from 2.5 to 4 in simulations,10,12,20,22) whereas
experiments1,4) have found relatively low value of �2:5.
Notably, the ratio of the vertical to horizontal hydrody-
namic velocity fluctuations in this study, �Vz

H=�Vx
H � 2:36,

is in good agreement with the experimental1,4) and
simulations22) studies. From the asymmetry of the system
induced by the gravity, velocity fluctuations are expected to
be anisotropic.

4.3 Anisotropic behavior of diffusion
Diffusion refers to the fluctuating motion of particles.

Individual particles lose the memory of their velocity after
prolonged HIs, and thereafter follow a random-walk
diffusion process. This effect is evident in the behaviour
of the temporal autocorrelation functions of the velocity

fluctuations and the linear growth of the mean-square
displacement (MSD).

The equilibrium self-diffusion coefficient can be obtained
using the Green–Kubo equation

D0 ¼
Z 1

0

C0ð�Þ d� ð15Þ

or the Einstein relationship

D0 ¼ lim
t!1

1

6t
hðRiðtÞ � Rið0ÞÞ2i: ð16Þ

To examine the anisotropic particle diffusion in sedimenta-
tion, we define the temporal diffusion constant both in the
horizontal

DxðtÞ ¼ 1

2t
hðRixðtÞ � Rixð0ÞÞ2i ð17Þ

and vertical directions

DzðtÞ ¼ 1

2t
hðRizðtÞ � Rizð0Þ � VsedtÞ2i: ð18Þ

Figure 4 shows the time-dependent diffusion coefficient
defined by Eqs. (17) and (18) for various Pe. The diffusion
coefficients are normalized by the equilibrium self-diffusion
coefficient D0, which can be found via Eq. (15) or (16) at
Pe ¼ 0, whereas time is normalized by the Stokes time.
One can see in Fig. 4 that self-diffusion becomes highly
anisotropic at higher Pe. We determined the long-time self-
diffusion coefficients D� ¼ limt!1 D�ðtÞ by fitting the
simulation data with

D�ðtÞ ¼ D� 1� exp � t

�r

� �
� �� �
; ð19Þ

where D�, �r, and 
 are the fitting parameters. In Figs. 4 and
5, values of Dz=D0 much larger than unity suggest that the
role of HIs cannot be overlooked, even at low Pe. A similar
phenomena was observed by Padding et al.19)

To understand the diffusivity, we consider the total
diffusion coefficient D as the sum of thermal D0 and
hydrodynamic diffusivity DH, where latter can be estimated
via the aforementioned scaling arguments,

D�
H � ð�V�

HÞ2��H ¼ A�
1A

�
2V

�¼0
s a�1=2ðL=aÞ3=2 ð20Þ

¼ A�
1A

�
2D0Pe�

1=2ðL=aÞ3=2: ð21Þ
The following simple scaling relationships are predicted for
the present simulation results:

Dx=D0 ¼ 1þ Ax
1A

x
2 Pe �

1=2ðL=aÞ3=2 ¼ 1þ 0:158Pe; ð22Þ
Dz=D0 ¼ 1þ Az

1A
z
2 Pe �

1=2ðL=aÞ3=2 ¼ 1þ 4:313Pe: ð23Þ
These scaling arguments indicate that the vertical and

horizontal diffusion coefficients increase linearly with Pe,
but with a smaller prefactor in the horizontal direction.
Figure 5 shows a comparison of the steady-state self-
diffusion coefficients with those predicted by the scaling
argument. The simulation results show that diffusion
coefficients increase linearly with increase of hydrodynamic
fluctuations both parallel and perpendicular to gravity.

A deviation from the predicted scaling equations is
evident at Pe < 6, which shows the transition from a
thermal-fluctuations-dominated regime to a hydrodynamic-
fluctuations-dominated regime. Since, above scaling rela-
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tions are derived by adding pure thermal and hydrodynamic
forces. Therefore, scaling relations are expected to work
well at either very low Pe (thermal force dominates) or high
Pe (hydrodynamic force dominates). Hence, deviation from
the scaling relations indicates the interplay between these
two forces. Our simulations show good agreement with the
predictive Eqs. (22) and (23), determined from scaling
arguments. These scaling arguments also indicate that
anisotropy in diffusion increases with the increase of Pe,
reaching a steady value at high Pe. From a simple
dimensional analysis of Eq. (23), one can also predict that
Dz=aV

�¼0
s should collapse to a single value at higher Pe. In

our simulation, this value �4 and is in good agreement with
experimental results.1,2)

The majority of diffusion research is focused in the non-
Brownian regime, and anisotropic behaviour of diffusion at
finite Pe has not yet been explored. We have attempted to
investigate this anisotropic behaviour at finite Pe and found
that it increases with increasing Pe and settles to a steady
value at higher Pe, as shown in Fig. 6. This observation
suggests that the effect of thermal fluctuations is significant
at Pe � 29 before HIs begin to dominate the phenomena.
We can predict the anisotropic behaviour of the diffusion at
finite Pe with scaling arguments found in Eqs. (22) and (23).
Our data shows good agreement with the predicted diffusion
anisotropy, as shown in Fig. 6.

Because the diffusivity is the product of �V2
H and �H,

a higher diffusion anisotropy value was expected. This
higher value originates from the difference in vertical and
horizontal relaxation times. The diffusion anisotropy can be
reduced by increasing the aspect ratio of the simulation
box.30) An increase in the aspect ratio reduces the difference
in vertical and horizontal relaxation times and hence the
diffusion anisotropy. Nicolai1) achieved diffusion anisotropy
in a non-Brownian regime of Dz=Dx ’ 7 at � ¼ 0:05,
whereas Padding et al.19) reported the same value in
simulations using a periodic box of aspect ratio of 3 at
� ¼ 0:04. Ladd12) observed a much higher value of 77 in a
cubic simulation box for � ¼ 0:05. This higher value was
attributed to the small system size and the full periodic
boundary conditions that were used. Cunha et al.20) observed
the anisotropy to be 10 using an aspect ratio of 3 at
� ¼ 0:03. To quantitatively compare the anisotropy values
using an experimental system, one should consider that our
simulations depend on the system size, whereas experiments
do not. Another possible explanation for the discrepancy
between simulation and experimental results is the presence
of a side wall, which creates microstructure inhomogeneity
over time. The presence of even a small extent of

100
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Fig. 5. A comparison of steady state self-diffusion coefficients

D�ð� 2 x; zÞ both in vertical and horizontal direction with those predicted

by scaling Eqs. (22) and (23) as a function of Pe. The self-diffusion

coefficients are normalized by the equilibrium diffusion coefficient D0.
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polydispersity can also temper the diffusion. Experimental
and simulated diffusion anisotropy results are summarized in
Table I.

5. Concluding Remarks

In conclusion, we studied the steady-state sedimentation
at finite Pe by DNS using the SP method in a spatially
unscreened regime. The present study focused on the relative
effects of thermal and hydrodynamic fluctuations on ani-
sotropic behaviour of velocity fluctuation and self-diffusion.
We observed that the thermal fluctuations are noticeable at
Pe � 29, before HIs significantly dominate the phenomena.
We found that the amplitude of the velocity correlation
scales with the square of the Stokes velocity at large Pe, with
vertical hydrodynamic velocity fluctuations 2.36 times larger
than the horizontal hydrodynamic velocity fluctuations. In
addition, we successfully tested the scaling for hydrody-
namic velocity fluctuations, predicted by Hinch9) on our
system and used it to evaluate the anisotropic behaviour of
diffusion. We inferred that the long time steady-state self-
diffusion coefficient increased with the increase of Pe both
in the direction of gravity and perpendicular to gravity and it
became highly anisotropic at high Pe, with a vertical self-
diffusion coefficient higher than the horizontal, in good
agreement with the scaling. This anisotropy of the vertical
and horizontal diffusion increased as a function of Pe and
levelled off at higher Pe. Our results endorsed the findings
of Koch,30) who suggested that the change in the velocity
fluctuations with the box shape is relatively modest, however
diffusion coefficients changes rather significantly with the
aspect ratio. Similar to Koch findings, velocity fluctuations
in our simulations are also in good agreement with the other
simulation19,20) and experimental results,1) whereas diffusion
anisotropy is higher due to large vertical relaxation time. So
far, researchers have paid little attention to the anisotropic
behaviour of diffusion at finite Pe. We will extend our
simulation studies to investigate the salient features of
this diffusion anisotropy at large volume fractions, various
system sizes, and large Re. Extensive simulations are under
way to study such situations specially to verify the scaling
arguments at different volume fractions and system sizes.
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